文章编号:1673-5005(2016)02-0147-08

doi:10.3969/j.issn.1673-5005.2016.02.019

CO₂/CH₄ 在干酪根中竞争吸附规律的分子模拟

隋宏光,姚 军

(中国石油大学石油工程学院,山东青岛 266580)

摘要:选取有机质作为研究对象,构建干酪根模型,采用巨正则系综蒙特卡罗(GCMC)方法和分子动力学方法(MD) 研究不同摩尔分数、不同压力下 CH₄和 CO₂的气体的竞争吸附行为以及吸附引起的干酪根本体形变。结果表明: CH₄和 CO₂单组分吸附时吸附量随着压力的增大而增大,CO₂吸附会在较小的压力时达到饱和,两种气体吸附符合 Langmuir 吸附规律,可以使用 Langmuir 方程进行拟合;在相同的压力和温度下,CO₂/CH₄吸附选择性会随着 CO₂ 摩 尔分数的增大而减小,CO₂更易被干酪根吸附;干酪根与 CO₂ 有较强的相互作用,干酪根中不同的原子对吸附起着 不同的作用;低压阶段吸附是引起体积应变的主要原因,高压阶段压力对体积应变发挥明显作用。

关键词:干酪根; 竞争吸附; 分子模拟; 体积应变

中图分类号:TE 319 文献标志码:A

引用格式:隋宏光,姚军. CO₂/CH₄ 在干酪根中竞争吸附规律的分子模拟[J]. 中国石油大学学报(自然科学版), 2016,40(2):147-154.

SUI Hongguang, YAO Jun. Molecular simulation of CO_2/CH_4 competitive adsorption in kerogen[J]. Journal of China University of Petroleum (Edition of Natural Science), 2016,40(2):147-154.

Molecular simulation of CO_2/CH_4 competitive adsorption in kerogen

SUI Hongguang, YAO Jun

(School of Petroleum Engineering in China University of Petroleum, Qingdao 266580, China)

Abstract: The kerogen model was built and the organic matter was selected as the research object. The CH_4 and CO_2 adsorption behavior and the associated volumetric strain of the kerogen at different CO_2 mole fractions and different pressures were investigated using Monte Carlo (GCMC) and Molecular Dynamic methods. The results show that the adsorption amount of CH_4 and CO_2 increases with pressure increase. And CO_2 adsorption amount can reach maximum at lower pressure. The adsorption of CH_4 and CO_2 accords with the law of Langmuir adsorption and can be fitted by Langmuir equation. The adsorption selectivity of CH_4/CO_2 decreases as the CO_2 mole fractions increase at the same pressure and temperature, and the CO_2 is easier adsorptive by kerogen. Also it is found that there is a strong interaction between kerogen and CO_2 , and different atoms play different roles for adsorption in kerogen. At low pressures, the adsorption is the main reasons for volumetric strain, and at high pressures, the pressure is a significant role in volumetric strain.

Keywords: kerogen; competitive adsorption; molecular simulation; volumetric strain

页岩气^[1-3]的主要成分是 CH₄,其主要以吸附态 和游离态存在,以吸附态赋存于页岩中有机质表面, 以游离态赋存于孔隙发育的页岩层中,还有少量的溶 解态,其中吸附态占 20% ~85%^[4]。吸附态是页岩 气的主要特征,页岩气的开采过程是游离气释放-吸 附气解析-游离气再释放的动态过程,页岩气藏的吸 附特性对页岩气的储量计算^[5]、开采方案制定、开采 过程中在纳米孔隙中的渗流机制和后期的产能预测 研究具有重要指导意义^[6]。页岩气藏注 CO₂ 不仅可 以对 CO₂ 进行封存,还可以促进 CH₄ 解吸,增加页岩 气产量。对于 CO₂、CH₄ 在煤、碳纳米孔隙材料等有 机质中的吸附行为^[7-18],Billemont 等^[9]借助于实验和

收稿日期:2015-09-25

作者简介:隋宏光(1981-),男,博士,研究方向为油气渗流与页岩气藏存储。E-mail:suihg@upc.edu.cn。

分子模拟方法研究了纳米孔隙中存在水时对 CO,、 CH₄吸附的影响,表明水的存在会降低 CO, 和 CH₄ 的吸附: Kurniawan 等^[16] 通过 DFT 和 GCMC 方法研 究了 CO2、CH4 的单组分气体以及它们的混合气体在 温度为 308~348 K,压力最高达到 30 MPa,宽度为 0.75~7.5 nm 的理想狭缝孔隙中吸附行为,表明 CO₂/CH₄ 混合气体中 CO₂ 比 CH₄ 更容易吸附,随着 压力的增大,对CO,的吸附选择性先增大,达到最大 值后再缓慢减小,最后达到稳定值:Lu 等^[17]通过 DFT 和 GCMC 方法研究了理想碳材料边缘带不同官能团 对 CO₂/CH₄ 混合气体吸附行为,表明吸附质更有利 于CO,的吸附,在低压条件下,吸附能力依次为 NH₂—NPC>COOH—NPC>OH—NPC>H—NPC>NPC; Majewska 等^[19] 通过实验的方法研究了 CO, 和 CH₄ 的单组分气体以及它们的混合气体在含有沥青质煤 中的吸附,发现在压力为 2.6 MPa 的条件下,煤更有 利于 CH₄ 的吸附。笔者根据干酪根各种元素含量构 建含有氢(H)、氧(O)、氮(N)、硫(S)的较真实干酪 根分子模型,模拟 CO₂/CH₄ 气体在非晶体、化学结构 异性的干酪根孔隙中的吸附行为,采用巨正则蒙特卡 罗方法(GCMC)和分子动力学方法(MD)模拟 CH₄、 CO, 在有机质干酪根孔隙中的吸附行为,研究干酪根 对 CH₄ 和 CO, 的吸附性能, 阐明 CH₄ 和 CO, 在有机 质干酪根中的吸附机制,计算 CH4 和 CO2 在页岩储 层有机质中不同埋藏深度(压力)的吸附量及 CH4 和 CO,的竞争吸附行为,确定利用 CO,置换技术^[20]开 采页岩气藏的最佳埋藏深度(压力),评价吸附对干酪 根体积变化的影响。

1 模拟方法

1.1 模型

有机质干酪根为各向异性的无定型结构,主要 含有碳、氢、氧,同时也含有少量的氮、硫,没有固定 的化学式和分子结构。本文中选用 II 型成熟度较高 有机质模拟干酪根^[21],其分子式为 C₁₇₅H₁₀₂O₉N₄S₂, 如图 1,其中,灰色为碳原子,白的代表氢原子,红色 代表氧原子,蓝色代表氮原子,黄色代表硫原子。选 取 10 个分子构建密度为 1 g/cm³、尺寸为 3.448 nm ×3.448 nm×3.448 nm 的超晶包模型,所有模型使用 Materials Studio 软件的 Amorphous Cell 模块构建。

孔隙结构与拓扑形态对气体的吸附储存起着重要的作用^[22]。借助于 Materials Studio 软件测量模型的有效孔隙体积和表面积,并计算孔隙度。对于 微观孔隙结构,其孔隙体积及表面积的计算不同于

宏观孔隙^[23-24], 需考虑吸附质分子直径, 即不同的吸附质分子直径对应着不同的有效(可接触) 孔隙体积及表面积, 如图 2, 其中灰色区域为骨架, 蓝色区域包围着的则表示有效孔隙体积(以 CH₄ 为例)。本文中 CH₄和 CO₂的分子直径分别为 0. 38和 0. 33 nm, 对应 CH₄的有效体积和表面积分别为 0. 186 cm³/g和 3 328 m²/g, CO₂的有效体积和表面积分别为 0. 203 cm³/g和 3 558 m²/g。其中 CH₄采用刚性四面体的 5点结构, CO₂为线性 3 点结构。

图1 干酪根分子模型及超晶包

1.2 分子模拟方法

蒙特卡罗方法模拟计算采用 Materials Studio 软件包中 Sorption 模块。在分子间的 vdW 相互作用和静电相互作用分别采用 Atom 和 Ewald 求和方法,模型体系采用周期性边界条件。每个循环都包括4 种可能尝试:①插入一个分子到模拟盒子中;②从模拟盒子中随机删除一个分子;③完全重生长一个分子; ④移动一个分子,每种尝试的概率分别为 0.4 、0.2 、0.2 、0.2 。 每个数据点的前 5 000 000 步为吸附平衡阶段,后 10 000 000 步作为平衡后吸附量数据统计样本,力场选择 COMPASS 力场^[25],非键截断半径设置为 1.7 nm。模拟中用逸度代替压力模拟 CH₄ 和 CO, 的吸附,逸度通过逸度系数计算,逸度系数通过 Peng-Robinson 方程^[26]计算得到。分子动力学方法 模拟计算采用 Focite 模块, 力场与分子间作用力设 置与蒙特卡罗方法一样。采用正则系综(NVT),用 Andersen 热浴控温,进行 1 ns 的分子动力学运算, 步长为1 fs,其中前 500 000 步使体系达到平衡,后 500000 步统计要计算的热力学性质。

结果分析 2

借助于分子模拟方法研究不同压力、不同摩尔 分数 CH₄ 和 CO, 在干酪根孔隙中的吸附行为,并研 究干酪根中除碳氢元素外其他元素对 CH₄ 和 CO₂ 吸附的影响。

吸附等温线和吸附选择性 2.1

图 3 为注入不同摩尔分数 CH₄、CO, 的混合气 体随压力变化的吸附等温线。可以看出, CH,、CO, 的绝对吸附量均随着压力的增大而变大,且均在较 小压力范围内达到吸附饱和,CH。约小于10 MPa, CO,约小于5 MPa,说明有机质与 CO,的作用速度 较快。由图 3(a) 看出, 在单一组分 CH4 气体和与 CO, 混合的 CH4 气体吸附作比较, 单一组分 CH4 气 体的吸附明显大于混合气体中 CH4 的吸附量,表明 混合气体中,有机质与 CO,作用较强,使其较快的 吸附到有机质表面,减小 CH4 与有机质的相互作 用,从而减少 CH4 的吸附。

温度为 298 K 下不同摩尔分数的 CH4 和 CO, 的吸附等温线 图 3

CH₄和 CO, 在所研究的有机质干酪根中的吸 附等温线呈 I 型 Langmuir 吸附,符合 Langmuir 吸 附^[27]特征,对其采用 Langmuir 吸附公式^[28] 拟合:

式中,A为吸附气含量;AL为Langmuir体积,代表最 大吸附量; $p_{\rm L}$ 为 Langmuir 压力,其值是当吸附量达 到最大吸附量一半所对应的压力;p为当前所处的 压力。图4为单一组分气体在有机质中吸附的模拟 及 Langmuir 拟合曲线。

(1)

Fig. 4 Adsorption isotherm and Langmuir equation fitting of CH₄ and CO₂

通过 Langmuir 公式拟合可以得到: $A_{\rm L}$ = 19.28 mmol/cm³, p₁=0.91 MPa。拟合程度为 R²>0.9954。 结果表明 CH₄ 在有机质干酪根孔隙中的吸附符合 Langmuir 吸附规律。表1为各不同摩尔分数下 CH₄ 的 Langmuir 吸附拟合结果。图4(b)、表2为各不同 摩尔分数下 CO₂ 的 Langmuir 吸附拟合结果,与 CH_4 相比较,在本研究的模型中 CO₂ 的 Langmuir 吸附拟 合结果拟合程度要更高一些。

表1 CH₄ 在干酪根孔隙中的吸附 Langmuir 拟合结果

Table 1Langmuir fitting results of CH4adsorption in kerogen

$y_{\rm CH_4}$	$A_{\rm L}/({\rm mmol}\cdot{\rm cm}^{-3})$	$p_{\rm L}/{ m MPa}$	R^2
100%	19. 28	0. 91	0. 995 4
80%	8.34	0.34	0.9968
60%	5.33	0.61	0. 981 1
50%	3.80	0.67	0. 968 1
40%	2.72	0.87	0. 958 1
20%	1.76	1.76	0.9625

表 2	CO_2	生干酪根孔隙中的吸附 Langmuir 拟合结果	
	~	0	

 Table 2
 Langmuir fitting results of CO2

adsorption in kerogen

y _{co2}	$A_{\rm L}/({\rm mmol}\cdot{\rm cm}^{-3})$	$p_{\rm L}/{ m MPa}$	R^2
100%	23.03	0.27	0. 997 3
80%	21.81	0.31	0. 998 5
60%	20. 56	0.34	0.9966
50%	19.41	0.38	0.9969
40%	18.39	0.47	0.9970
20%	14.80	0.92	0.9969

图 5 为不同压力下 CH₄ 和 CO₂ 的混合气体在 不同摩尔分数比例下的最大吸附量。可以看出,当 混合气体中 CO₂ 的摩尔分数大于 0.21 后,CO₂ 的吸 附量总是大于 CH₄ 的吸附量,与 Zhang^[13]等研究的 CH₄ 和 CO₂ 的混合气体在煤中的吸附结果相符合。 图 6 为 CH₄ 和 CO₂ 的混合气体在有机质孔隙中吸 附的吸附选择性,吸附选择性是指吸附剂因其组分、 结构不同所显示出来的对某些物质优先吸附的能 力,本文关于吸附选择性定义为

$$S_{\rm CO_2/CH_4} = \frac{x_{\rm CO_2}/x_{\rm CH_4}}{y_{\rm CO_2}/y_{\rm CH_4}}.$$
 (2)

式中, x_{CO_2} , x_{CH_4} 为 CO₂和 CH₄在吸附态下的摩尔分数; y_{CO_2} , y_{CH_4} 为 CO₂和 CH₄在游离态下的摩尔分数。 通过定义可以看出, S_{CO_2/CH_4} 越大,对于 CO₂和 CH₄的混合气体,吸附剂更容易吸附 CO₂。在所研究的范围内,可以得到选择性的数值为 3.7~7.9,表明 有机质在此条件下均优先对 CO₂ 吸附,这与 CO₂和 CH₄的分子性质有关,CO₂的四极距作用强于 CH₄的分子的八极距作用^[29]。由图 5 看出,随着压力以及摩尔分数的变大, S_{CO_2/CH_4} 变小,尤其在低压端,减 小较快变化明显。结果表明,不同地层深度(地层 深度相同,地层压力相同)用 CO₂ 驱替 CH₄,驱替同 等样 CH_4 ,较浅的地层对应着较少的 CO_2 。同样,在 相同的地层深度,驱替同等 CH_4 ,需要较多的 CO_2 , 即可以封存较多的 CO_2 。

图 5 不同压力下的最大吸附量

图 6 不同压力下的 CO₂/CH₄ 吸附性

2.2 径向分布函数

分析 CH₄ 和 CO₂ 在干酪根孔隙中的微观结构 特征,需要考虑径向分布函数(RDF)和平均作用势 (PMF)。径向分布函数是以某个原子为中心,在距 其 r 处发现另一个原子的概率,它表示两个粒子之 间在彼此空间占有的几率,径向分布函数既可以研 究物质的有序性,也可以描述粒子的相关性。平均 作用势则体现了成对粒子之间的结合能力,可根据 两个粒子之间的径向分布函数计算得出^[30-31]

 $W(r) = -k_B T \ln g(r)$. (3) 式中, k_B 为 Bolzmann 常数;T为系统的绝对温度;g(r)为径向分布函数。

图 7 为干酪根孔隙中单一组分 CH₄/CO₂ 的碳 原子在 20 MPa 压力下的径向分布函数,可以看出, 两种气体的径向分布函数形状基本一致,出现两次 明显的峰值,CH₄ 气体位于 0.41 和 0.79 nm 处,而 CO₂ 位于 0.39 和 0.75 nm 处,比较两次峰值,CO₂ 均较大些,说明干酪根与 CO₂ 有较强的相互作用。 图 8 为干酪根孔隙中单一组分 CH₄ 和 CO₂ 的碳原 子的平均作用势,就 CH₄ 气体而言,在约为 0.39 和 0.79 nm 处出现两个粒子相接触极小势(CM)和分 离极小势(SM),在 CM 与 SM 之间存在层障(LB), 层障表明任意中心 CH₄ 分子周围存在不同的 CH₄

图 7 CH₄/CO₂ 中碳原子的径向分布函数

Fig. 7 RDF between carbon atoms in CH_4/CO_2

分子层,分子层之间存在能垒。周围 CH₄ 要进入中 心 CH₄ 分子区域并与之发生作用,必须要克服两层 之间的层障(LB),即能垒。从图中可以看出 CH₄ 克服能垒进入第一层与中心 CH₄ 形成粒子对,以及 脱离第一分子层进入到周围分子层中,这两个相反 过程中 CH₄ 要克服的能垒并不相等(即分子层障能 垒的顺反方向不等)。对 PMF 分析表明,CH₄ 分子 一旦由于某些相互作用而形成紧密分布的吸附层, 则吸附层中任一分子周围都会形成不同的分子层, 不同的分子为了处于更加稳定的状态而存在于各自 的第一分子层中,因此使吸附层更加稳定。CO₂ 的 PMF 与 CH₄ 的趋势相同,但是有更小的 CM 和 SM, 表明 CO, 形成的分子层更加稳定。

为研究干酪根中不同原子对 CH_4 和 CO_2 吸附 的影响,选取 $y_{CO_2} = 0.5$, 压力为 20 MPa 的 CH_4 和 CO_2 混合气体吸附模型,作 CH_4 和 CO_2 分子中碳原 子与干酪根中各种原子的径向分布函数,结果见图 9_{\circ}

图 9 CH₄/CO₂ 中碳原子与干酪根中各种 原子之间的径向分布函数 Fig. 9 RDFs between carbon atoms in CH₄/CO, and

atomsin kerogen

由图 9(a)看出, CH₄ 中碳原子与干酪根中 S 原 子的径向分布函数峰值最大, 位置为 0.43 nm, 后面 还出现多次峰值, 是因为 S 原子在干酪模型中以芳 香烃形式存在, 其半径较大(与 O 原子比较), 有较 强的极性, 容易形成电负性, 和 CH₄/CO₂ 有较强的 相互作用。CH₄ 中碳原子与其他原子的作用的峰值 大小相近, 出现位置依次为 H 原子(0.33 nm), C 原 子(0.43 nm) O 原子(0.47 nm) 和 N 原子(0.91 nm)。与 CH₄ 相似, CO₂ 分子中碳原子与干酪根中 S 原子的径向分布函数峰值也为最大, 位于 0.43 nm 处。不同的是, 与 N 原子形成的径向分布函数峰值 也较大, 位于 0.39 nm 处, 可能是因为干酪根模型中 存在 N—H 健, 只与 CO₂ 有较强的作用。模型中 O 原子均是以"桥"的作用连接碳原子,没有形成极性的羟基(-OH),能与 CH_4 或 CO_2 有较强的作用^[32],所以两种气体与 O 原子的作用并不明显,与之前学者研究结果有所区别^[13,17,29]。

2.3 体积应变

多孔介质的孔隙度、渗透率和变形对流体在其中的运移有着重要的影响。有机质中含有大量的孔隙,吸附 CH₄和 CO₂ 会使其产生膨胀变形,降低渗透率影响气体的运移,反之,气体的解吸也会使有机质收缩,增大渗透率,有利于气体的运移,因此有必要对有机质由于吸附解吸而产生的形变进行研究。Coussy^[33]的模型研究孔隙中的游离态流体对孔隙介质体积形变的影响,而没有考虑吸附带来的变化。Brochard 等^[34-35]扩展 Coussy^[33]的模型,包含吸附对多孔介质体积的影响:

$$\varepsilon = -\frac{p}{K} + \frac{C_{\rm CH_4}}{K} \int_{-\infty}^{\mu_{\rm CH_4}} n_{\rm CH_4} d\mu_{\rm CH_4} + \frac{C_{\rm CO_2}}{K} \int_{-\infty}^{\mu_{\rm CO_2}} n_{\rm CO_2} d\mu_{\rm CO_2}.$$
(4)

式中, ε 为体积应变;K 为体积模量; C_{CH_4} 和 C_{CO_2} 分别 为 CH₄和 CO₂ 气体的耦合常数; n_{CH_4} 和 n_{CH_4} 分别为 CH₄和 CO₂ 气体的绝对吸附量; μ_{CH_4} 和 μ_{CO_2} 为 CH₄ 和 CO₂ 气体的化学式。由于

 $d\mu_i = RT dln f_i, i = CH_4, CO_2,$ (5)

其中, f_i 为两种气体对应的逸度,根据式(5)和(6) 得到

$$\varepsilon = -\frac{p}{K} + \frac{C_{CH_4}}{K} \int_0^{f_{CH_4}} \frac{n_{CH_4}RT}{f_{CH_4}} df_{CH_4} + \frac{C_{CO_2}}{K} \int_0^{f_{CO_2}} \frac{n_{CO_2}RT}{f_{CO_2}} df_{CO_2}.$$
 (6)

通过式(7)和常数 $C_{CH_4} = 6.05 \ C_{Co_2} = 7.60 \ K =$ 2.65 GPa^[34]以及吸附量,可计算出体积应变,结果 见图 10。可以看出,体积应变随着压力的变大迅速 变大,达到最大值,随着压力的继续增大,体积应变 会缓慢减小。体积应变是由吸附引起的膨胀和压力 作用的压缩共同引起,在低压阶段吸附起主要作用, 而在高压阶段压缩发挥更明显的作用,两种作用的 平衡位置对应着体积应变的最大值。在 CH₄ 和 CO₂ 的混合气体吸附中,体积应变最大值随着 CO₂ 的摩尔分数变大而变大,同时对应着较小的压力,最 大值 约 为 4.5% ~ 7.5%,大于 Majewska^[19] 和 Zhang^[13]等对煤研究的体积应变数值。本文模型有 较小的密度、较大的孔隙空间和孔隙度,因此产生较 大的吸附量,进而引起较大的体积应变。

Fig. 10 Volumetric strain for different gas compositions

2.4 模型验证

借用文献[10]的实验数据分析本文模型和模 拟方法的可靠性,文献[10]模拟了甲烷在 F400 活 性炭中的吸附,模型计算和模拟结果对比见图 11。 可以看出,在低压部分(<3 MPa)模拟结果与计算结 果基本一致,说明模型和计算方法的可靠性,高压部 分的模拟结果偏大主要有两种原因:一是本文模型 有着较大的孔隙度,较大的孔隙在高压的条件下能 容纳较大的吸附量;二是因为实验温度(318.15 K) 高于模拟温度(298 K),高温会影响 CH₄ 气体的吸 附。

and simulation results

3 结 论

(1) CH₄和 CO₂两种气体在干酪根中吸附符合 Langmuir 吸附规律,可以使用 Langmuir 方程进行拟 合。在相同的压力和温度下,CO₂/CH₄吸附选择性 会随着 CO₂ 摩尔分数和压力的增大而减小,CO₂ 更 易被干酪根吸附。

(2) CH₄和 CO₂两种气体在干酪根孔隙表面会

形成稳定的吸附层。干酪根与 CO₂ 有较强的相互 作用,干酪根中不同的原子对吸附起着不同的作用, S 对 CH₄ 和 CO₂ 两种气体均有较强的作用。没有 形成极性羟基(—OH)的氧产生的作用并不明显。

(3)干酪根本体的体积变化是由吸附和外界压 力共同作用的结果。在低压阶段吸附是引起的体积 应变起主要原因;在高压阶段,压力对体积应变发挥 明显作用。

参考文献:

- [1] 张金川,汪宗余,聂海宽,等.页岩气及其勘探研究意义[J].现代地质,2008,22(4):640-646.
 ZHANG Jinchuan, WANG Zongyu, NIE Haikuan, et al. Shale gas and its significance for exploration[J]. Geoscience, 2008,22(4):640-646.
- [2] 姚军,孙海,黄朝琴,等.页岩气藏开发中的关键力学问题[J].中国科学,2013,43(12):1527-1547.
 YAO Jun, SUN Hai, HUANG Zhaoqin, et al. Key mechanical problems in the development of shale gas reservoirs[J]. Scientia Sinica, 2013,43(12):1527-1547.
- [3] 孙海,姚军,孙致学,等.页岩气数值模拟技术进展及展望[J].油气地质与采收率,2012,19(1):46-49.
 SUN Hai, YAO Jun, SUN Zhixue, et al. Recent development and prospect on numerical simulation of shale gas reserviors[J]. Petroleum Geology and Recovery Efficiency, 2012,19(1):46-49.
- [4] CURTIS J B. Fractured shale-gas systems [J]. AAPG bulletin, 2002,86(11):1921-1938.
- [5] AMBROSE R J, HARTMAN R C C, AKKUTLU I Y. Multi-component sorbed-phase considerations for shale gas-in-place calculations [R]. SPE 141416, 2011.
- [6] 张雪芬,陆现彩,张林晔,等.页岩气的赋存形式研究及其石油地质意义[J].地球科学进展,2010,25(6): 597-604.

ZHANG Xuefen, LU Xiancai, ZHANG Linye, et al. Occurrences of shale gas and their petroleum geological significance[J]. Advances in Earth Science, 2010,25(6): 597-604.

- [7] MOSHER K, HE J, LIU Y, et al. Molecular simulation of methane adsorption in micro-and mesoporous carbons with applications to coal and gas shale systems[J]. International Journal of Coal Geology, 2013,109/110:36-44.
- [8] TENNEY C M, LASTOSKIE C M. Molecular simulation of carbon dioxide adsorption in chemically and structurally heterogeneous porous carbons [J]. Environmental Progress, 2006,25(4):343-354.
- [9] BILLEMONT P, COASNE B, de WEIRELD G. An ex-

perimental and molecular simulation study of the adsorption of carbon dioxide and methane in nanoporous carbons in the presence of water [J]. Langmuir, 2011,27(3): 1015-1024.

- [10] BILLEMONT P, COASNE B, de WEIRELD G. Adsorption of carbon dioxide, methane, and their mixtures in porous carbons: effect of surface chemistry, water content, and pore disorder[J]. Langmuir, 2013,29(10): 3328-3338.
- [11] GENSTERBLUM Y, BUSCH A, KROOSS B M. Molecular concept and experimental evidence of competitive adsorption of H₂O, CO₂ and CH₄ on organic material
 [J]. Fuel, 2014,115:581-588.
- [12] GENSTERBLUM Y, MERKEL A, BUSCH A, et al. High-pressure CH₄ and CO₂ sorption isotherms as a function of coal maturity and the influence of moisture
 [J]. International Journal of Coal Geology, 2013,118: 45-57.
- [13] ZHANG J, LIU K, CLENNELL M B, et al. Molecular simulation of CO₂—CH₄ competitive adsorption and induced coal swelling[J]. Fuel, 2015,160:309-317.
- YANG N, LIU S, YANG X. Molecular simulation of preferential adsorption of CO₂ over CH₄ in Na-montmorillonite clay material [J]. Applied Surface Science, 2015,356:1262-1271.
- [15] KUMAR K V, M LLER E A, RODR GUEZ-REINOSO F. Effect of pore morphology on the adsorption of methane/hydrogen mixtures on carbon micropores [J]. The Journal of Physical Chemistry C, 2012, 116 (21): 11820-11829.
- [16] KURNIAWAN Y, BHATIA S K, RUDOLPH V. Simulation of binary mixture adsorption of methane and CO₂at supercritical conditions in carbons[J]. AIChE Journal, 2006,52(3):957-967.
- [17] LU X, JIN D, WEI S, et al. Competitive adsorption of binary CO₂/CH₄ mixture in nanoporous carbons: effect of edge-functionalization [J]. Nanoscale, 2015,7(3): 1002-1012.
- [18] SHARMA A, NAMSANI S, SINGH J K. Molecular simulation of shale gas adsorption and diffusion in inorganic nanopores [J]. Molecular Simulation, 2015,41 (5/6):414-422.
- [19] MAJEWSKA Z, CEGLARSKA-STEFANSKA G, MA-JEWSKI S, et al. Binary gas sorption/desorption experiments on a bituminous coal: simultaneous measurements on sorption kinetics, volumetric strain and acoustic emission[J]. International Journal of Coal Geology, 2009,77(1/2):90-102.

- [20] 王海桂, 沈忠厚, 李根生. 超临界 CO₂ 开发页岩气 技术[J]. 石油钻探技术, 2011,39(3):30-35.
 WANG Haizhu, SHEN Zhonghou, LI Gensheng. Feasibility analysis on shale gas exploitation with supercritical CO₂[J]. Petroleum Drilling Techniques, 2011,39(3): 30-35.
- [21] UNGERER P, COLLELL J, YIANNOURAKOU M. Molecular modeling of the volumetric and thermodynamic properties of kerogen: influence of organic type and maturity[J]. Energy & Fuels, 2015,29(1):91-105.
- [22] KONSTAS K, OSL T, YANG Y, et al. Methane storage in metal organic frameworks [J]. Journal of Materials Chemistry, 2012,22(33):16698-16708.
- [23] SARKISOV L, HARRISON A. Computational structure characterisation tools in application to ordered and disordered porous materials [J]. Molecular Simulation, 2011,37(15):1248-1257.
- [24] DUREN T, MILLANGE F, FEREY G, et al. Calculating geometric surface areas as a characterization tool for metal-organic frameworks [J]. The Journal of Physical Chemistry C, 2007,111(42):15350-15356.
- [25] SUN H. Compass: an ab initio force-field optimized for condensed-phase applications-overview with details on alkane and benzene compounds [J]. The Journal of Physical Chemistry B, 1998,102(38):7338-7364.
- [26] REID R C, PRAUSNITZ J M, POLING B E. The properties of gases and liquids [M]. New York: McGraw-Hill Book Company, 1987.
- [27] BRUNAUER S, DEMING L S, DEMING W E, et al. On a theory of the van der Waals adsorption of gases [J]. Journal of the American Chemical Society, 1940,

62(7):1723-1732.

- [28] LANGMUIR I. The adsorption of gases on plane surfaces of glass, mica and platinum [J]. Journal of the American Chemical Society, 1918,40(9):1361-1403.
- [29] LIU Y, WILCOX J. Effects of surface heterogeneity on the adsorption of CO₂ in microporous carbons[J]. Environmental Science & Technology, 2012,46(3):1940-1947.
- [30] SONG Q, GUO X, YUAN S, et al. Molecular dynamics simulation of sodium dodecyl benzene sulfonate aggregation on silica surface [J]. Acta Physico-Chimica Sinica, 2009,25(6):1053-1058.
- [31] FUJITA T, WATANABE H, TANAKA S. Effects of salt addition on strength and dynamics of hydrophobic interactions[J]. Chemical Physics Letters, 2007,434(1/2/ 3):42-48.
- [32] JOUBERT J I, GREIN C T, BIENSTOCK D. Effect of moisture on the methane capacity of American coals[J]. Fuel, 1974,53(3):186-191.
- [33] COUSSY O. Poromechanics [M]. New York: John Wiley and Sons, 2004.
- [34] BROCHARD L, VANDAMME M, PELLENQ R J M. Poromechanics of microporous media[J]. Journal of the Mechanics and Physics of Solids, 2012, 60 (4): 606-622.
- [35] BROCHARD L, VANDAMME M, PELLENQ R J M, et al. Adsorption-induced deformation of microporous materials: coal swelling induced by CO₂—CH₄ competitive adsorption[J]. Langmuir, 2012,28(5):2659-2670.

(编辑 刘为清)