文章编号:1673-5005(2015)05-0027-09

doi:10.3969/j.issn.1673-5005.2015.05.004

欧龙布鲁克微地块下奥陶统复理石物源和 构造背景研究

孙娇鹏^{1,2},陈世悦²,彭 渊³,邵鹏程²,马 帅²,刘 金²

(1.西北大学大陆动力学国家重点实验室/地质学系,陕西西安710069;2.中国石油大学地球科学与技术学院, 山东青岛266580;3.中国地质科学院地质力学所,北京100081)

摘要:利用地球化学测试资料,依据大地构造学理论,对大煤沟剖面石灰沟组碎屑岩物源区性质及构造属性进行研究。 结果表明:石灰沟组砂岩具有中等风化、快速堆积的特点,碎屑物质来源于上地壳酸性岩类,形成于活动大陆边缘构造 背景;早奧陶世晚期,碎屑物质来自南侧滩间山陆-弧碰撞带的复理石向北的远端超覆,造成欧龙布鲁克微地块南缘大 煤沟-城墙沟一带发生沉积岩、沉积相类型乃至沉积体系的转换;研究区不晚于488~471 Ma 进入陆-弧碰撞阶段,寒武 纪-早奧陶世,欧龙布鲁克海盆处于弧后位置,并非是被动大陆边缘盆地,而是与洋陆俯冲陆-弧碰撞有关的弧后盆地。 关键词:欧龙布鲁克微地块;下奥陶统;复理石;地球化学;柴北缘洋;弧陆碰撞

中图分类号:TE 121.2 文献标志码: A

引用格式:孙娇鹏,陈世悦,彭渊,等.欧龙布鲁克微地块下奥陶统复理石物源和构造背景研究[J].中国石油大学学报:自然科学版,2015,39(5):27-35.

SUN Jiaopeng, CHEN Shiyue, PENG Yuan, et al. Provenance and tectonic background of the Lower Ordovician flysch in Oulongbuluke microplate[J]. Journal of China University of Petroleum(Edition of Natural Science), 2015, 39(5):27-35.

Provenance and tectonic background of the Lower Ordovician flysch in Oulongbuluke microplate

SUN Jiaopeng^{1,2}, CHEN Shiyue², PENG Yuan³, SHAO Pengcheng², MA Shuai², LIU Jin²

(1. Department of Geology, State Key Laboratory of Continental Dynamics, Northwest University, Xi'an 710069, China;

2. School of Geosciences in China University of Petroleum, Qingdao 266580, China;

3. Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China)

Abstract: Using the geochemistry data, provenance property and structural attributes of Shihuigou formation clastic rocks from Dameigou outcrop were studied under the guidance of the sedimentary geotectonic theories. The results indicate that the provenance of the Shihuigou Formation with characteristics of moderately weathered and rapid accumulation is the upper crust acidic rocks, deposited in the active continental margin tectonic setting. From the early period of Early Ordovician, detrital material from Tanjianshan arc-continental collision zone distal overlapped from the south to the north, leading to the transition of sedimentary petrology types, sedimentary facie types and sedimentary system; By 488–471 Ma, the study area had entered into the stage of continental-arc collision period; During the Cambrian to Early Ordovician period, the Oulongbuluke sea basin was located in the back-arc position, which is not a passive continental margin basin, but a back-arc basin related to the subduction-arc collision.

Keywords: Oulongbuluke microplate; Lower Ordovician; flysch; geochemistry; North Qaidam Ocean; arc-continental collision

柴东北缘早古生代洋陆俯冲、陆陆碰撞等的研

究一直是中国地质界的热点,但迄今为止未见沉积

收稿日期:2015-05-10

作者简介:孙娇鹏(1988-),男,博士,博士后,研究方向为大地构造与沉积学。E-mail:sunjiaopeng@163.com。

学证据的支撑。复理石作为具有大地构造指示意义 的沉积建造,对其进行研究可以示踪碎屑颗粒物源 区^[1-2],明确盆地大地构造性质,为毗邻盆地的活动 构造带地质演化提供约束。笔者依据砂岩地球化学 测试结果,对盆地构造背景进行分析,复原柴北缘及 邻区早奥陶世构造-古地理格局,为柴北缘构造带 演化提供约束。

1 地质概况

欧龙布鲁克微地块夹持于柴达木地块与祁连地 块之间,其南界为柴北缘构造带,北界为宗务隆构造 带(图1(a))。区内早古生代发育寒武系欧龙布鲁 克群与下奥陶统下部多泉山组以台地浅滩及台缘斜 坡为主的碳酸盐岩岩系及下奥陶统上部石灰沟组复 理石建造,其下与震旦系区域性角度不整合接触,其 上被上泥盆统牦牛山组磨拉石建造角度不整合超覆 (图1(b))。

石灰沟组仅在大煤沟及城墙沟两地出露(图1(c)),其下与多泉山组斜坡相碳酸盐岩及暗色泥岩

连续沉积,其上与泥盆系砾岩层不整合接触(图1 (b),图2(a)),大致可分为两段,下部为暗色泥页 岩夹薄层泥晶灰岩段,上部为暗色泥页岩与砂岩互 层段(图1(b)、(c)),古生物资料显示其沉积于早 奥陶世晚期 Floian 阶(距今488~471 Ma)^[4]。以大 煤沟剖面为例,该剖面复理石段可分为两个沉积旋 回:单一旋回下部主要发育鲍马序列 A 段,砂岩层 厚一般为60~80 cm,呈现多个中厚层块状层理砂 岩的冲刷叠置,夹若干层 5~50 cm 厚的泥岩(图 2 (b));旋回上部以泥岩为主,砂岩多为薄层,泥/砂 比约 2/1~5/1(图 2(c));砂岩底部槽模、沟模及冲 刷、侵蚀、火焰等沉积构造屡见不鲜,对称波痕、粒序 层理和块状层理等也普遍发育(图2(e)、(f)、 (g))。镜下鉴定显示,石灰沟组砂岩中碎屑颗粒质 量分数为90%,碎屑颗粒以石英(约88%)及岩屑 (约12%)为主,不含碳酸盐岩岩屑;杂基含量较高, 约9%:胶结物主要为方解石,含量约1%。颗粒分 选与磨圆中等偏差,颗粒之间为颗粒--杂基支撑 (图2(d))。

图1 研究区地质简图(据孙娇鹏等^[3],2014)

Fig. 1 Sketch geological map of study area(after sun et al, 2014)

对采集到的15个砂岩进行测试分析,采样时尽量去除风化表面,在河北地矿所粉碎至74μm,主、微量与稀土元素含量测试在广州澳实矿物实验室完

成。主量元素采用 ME-XRF06 法测试,稀土元素和 微量元素含量分别采用 ME-MS81 和 ME-MS61 法 测试。分析测试结果及测试精度见表1。

图 2 石灰沟组典型沉积特征露头照片

Fig. 2 Typical outcrop sedimentary characteristics pictures of Shihuigou Formation

表1 石灰沟组碎屑岩特征元素测试结果

Table 1	Typical elements	compositions	of detrital	stones from	Shihuigou	Formation
Table 1	i ypical elements	compositions	or ucurtar	stones mon	Sinnuigou	rormation

	样品	$Al_2O_3/$	CaO/	$\mathrm{Fe}_2\mathrm{O}_3/$	$K_2 O /$	MgO/	Na ₂ 0/	$\mathrm{SiO}_2/$	Ba⁄	Ce/	Co/	Cr/	Hf⁄	La/
_	111	%	%	%	%	%	%	%	$(\mu g\boldsymbol{\cdot} g^{-1})$	$(\mu g\boldsymbol{\cdot} g^{-1})$	$(\mu g\boldsymbol{\cdot} g^{-1})$	$(\mu g\boldsymbol{\cdot} g^{-1})$	$(\mu g\boldsymbol{\cdot} g^{-1})$	$(\mu g\boldsymbol{\cdot} g^{-1})$
	DMG01	11.88	3.05	5.34	2.17	2.36	1.16	67.40	280	64.8	7.0	51	3.1	33.4
	DMG02	9.23	8.17	4.01	1.52	1.75	1.26	63.90	380	70.4	5.7	32	2.6	34.7
	DMG03	8.20	3.73	2.46	1.43	1.14	1.12	76.44	170	70.2	3.1	26	4.9	35.2
	DMG04	10.38	6.52	4.13	1.97	2.00	1.11	65.52	260	52.4	7.8	40	2.6	26.3
	DMG05	13.30	3.34	6.25	2.57	2.86	1.00	63.40	310	61.6	9.6	63	2.7	31.0
	DMG06	10.65	2.73	4.13	2.01	1.90	1.03	71.73	240	65.5	6.5	41	4.0	33.5
	DMG07	9.92	3.44	3.71	1.80	1.78	1.18	72.33	490	63.7	5.4	37	3.5	31.9
	DMG08	10.22	10.23	4.15	2.00	2.12	1.04	58.75	270	66.9	7.2	45	3.3	34.2
	DMG09	8.95	3.77	3.28	1.64	1.51	1.05	73.83	290	64.7	5.0	31	4.7	30.8
	DMG10	8.44	4.84	3.17	1.38	1.50	1.19	72.31	380	67.9	4.3	28	4.0	31.4
	DMG11	9.11	6.71	4.16	1.49	1.71	1.22	66.48	210	57.2	4.4	34	3.1	29.0
	DMG12	10.46	3.30	3.47	2.05	1.67	1.16	71.83	240	70.1	5.6	42	3.9	37.7
	DMG13	6.78	4.86	2.57	1.14	1.11	0.94	76.28	230	54.2	2.8	22	4.2	27.7
	DMG14	8.08	5.79	2.47	1.52	1.14	1.09	72.09	240	63.6	3.6	25	3.2	33.6
	DMG15	9.24	5.04	3.39	1.72	1.51	1.11	71.24	260	63.7	5.1	34	3.3	32.6
_														
=	样品	Zr/	Dy/	Er⁄	Eu/	Gd⁄	Ho/	Lu/	Nd/	Pr/	Sm/	Tb/	Tm/	Yb/
_	样品	$\begin{array}{c} Zr \not \\ (\mu g {\boldsymbol{\cdot}} g^{-1}) \end{array}$	Dy/ (μg•g ⁻¹)	Er/ (μg•g ⁻¹)	Eu/ (μg·g ⁻¹)	$\begin{array}{c} Gd \not \\ (\mu g {\boldsymbol{\cdot}} g^{-1}) \end{array}$	$\begin{array}{c} Ho \not \\ (\mu g {\boldsymbol{\cdot}} g^{-1}) \end{array}$	Lu/ (μg·g ⁻¹)	Nd⁄ (μg•g ⁻¹)	$\frac{\text{Pr/}}{(\mu g \boldsymbol{\cdot} g^{-1})}$	$\frac{Sm \not }{(\mu g \boldsymbol{\cdot} g^{-1})}$	$\begin{array}{c} Tb \not \\ (\mu g {\boldsymbol \cdot} g^{-1}) \end{array}$	$\frac{Tm \not }{(\mu g \boldsymbol{\cdot} g^{-1})}$	$\begin{array}{c} Yb \not \\ (\mu g {\boldsymbol \cdot} g^{-1}) \end{array}$
_	样品 DMG01	Zr/ (µg·g ⁻¹) 95.2	Dy/ (μg•g ⁻¹) 4.2	Er/ (μg•g ⁻¹) 2.6	Eu/ (μg·g ⁻¹) 1.1	$\begin{array}{c} Gd \not \\ (\mu g {\boldsymbol{\cdot}} g^{-1}) \\ 5 \end{array}$	Ho/ (μg·g ⁻¹) 0.8	Lu/ (μg·g ⁻¹) 0.4	Nd/ (μg·g ⁻¹) 26.3	Pr/ (μg•g ⁻¹) 6.7	Sm/ (µg·g ⁻¹) 5.8	Tb/ (μg•g ⁻¹) 0.7	$\frac{\text{Tm}/}{(\mu g \cdot g^{-1})} \\ 0.4$	Yb/ (μg•g ⁻¹) 2.4
_	样品 DMG01 DMG02	Zr/ (µg•g ⁻¹) 95. 2 80. 2	Dy/ (μg·g ⁻¹) 4. 2 5. 2	Er/ (µg•g ⁻¹) 2. 6 3. 2	Eu/ (μg·g ⁻¹) 1.1 1.3	$\begin{array}{c} Gd / \\ (\mu g { \cdot } g^{-1}) \\ 5 \\ 5.6 \end{array}$	Ho/ (μg•g ⁻¹) 0.8 1	Lu/ (μg·g ⁻¹) 0.4 0.5	Nd/ (μg·g ⁻¹) 26.3 29	Pr/ (μg•g ⁻¹) 6.7 7.1	$\frac{\text{Sm/}}{(\mu\text{g}\cdot\text{g}^{-1})} \\ 5.8 \\ 6.7$	Tb/ (μg·g ⁻¹) 0.7 0.8	Tm/ (μg•g ⁻¹) 0.4 0.5	Yb/ (μg·g ⁻¹) 2.4 2.6
_	样品 DMG01 DMG02 DMG03	Zr/ (μg·g ⁻¹) 95. 2 80. 2 156. 0	Dy/ (μg·g ⁻¹) 4. 2 5. 2 4. 0	Er/ (μg·g ⁻¹) 2.6 3.2 2.8		$\begin{array}{c} Gd \not/ \\ (\mu g \! \cdot \! g^{-1}) \\ 5 \\ 5. 6 \\ 5. 0 \end{array}$	Ho/ (μg•g ⁻¹) 0.8 1 0.8	Lu/ (μg·g ⁻¹) 0.4 0.5 0.4	Nd/ (μg•g ⁻¹) 26.3 29 29.0	Pr/ (μg·g ⁻¹) 6.7 7.1 7.3	$\frac{\text{Sm/}}{(\mu g \cdot g^{-1})}$ 5. 8 6. 7 6. 0	$\begin{array}{c} Tb \not \\ (\mu g \! \cdot \! g^{-1}) \\ 0. \ 7 \\ 0. \ 8 \\ 0. \ 7 \end{array}$	Tm/ (μg•g ⁻¹) 0.4 0.5 0.4	$\begin{array}{c} Yb \not \\ (\mu g \! \cdot \! g^{-1}) \\ \hline 2.4 \\ 2.6 \\ 2.5 \end{array}$
	样品 DMG01 DMG02 DMG03 DMG04	Zr/ (μg·g ⁻¹) 95. 2 80. 2 156. 0 79. 5	Dy/ (µg•g ⁻¹) 4. 2 5. 2 4. 0 3. 5	Er/ (μg·g ⁻¹) 2.6 3.2 2.8 2.3	Eu/ (μg·g ⁻¹) 1.1 1.3 0.9 1.1	$\begin{array}{c} Gd / \\ (\mu g \! \cdot \! g^{-1}) \\ 5 \\ 5. \ 6 \\ 5. \ 0 \\ 4. \ 4 \end{array}$	Ho/ (µg•g ⁻¹) 0. 8 1 0. 8 0. 7	Lu/ ($\mu g \cdot g^{-1}$) 0.4 0.5 0.4 0.3	Nd/ (µg•g ⁻¹) 26.3 29 29.0 23.8	$\begin{array}{c} Pr/\\ (\ \mu g \cdot g^{-1}) \\ 6.\ 7 \\ 7.\ 1 \\ 7.\ 3 \\ 6.\ 2 \end{array}$	$\frac{\text{Sm/}}{(\mu g^* g^{-1})}$ 5.8 6.7 6.0 5.6	$\begin{array}{c} Tb/\\ (\mu g\cdot g^{-1})\\ 0.\ 7\\ 0.\ 8\\ 0.\ 7\\ 0.\ 6\end{array}$	$\begin{array}{c} Tm/\\ (\ \mu g \cdot g^{-1})\\ 0.\ 4\\ 0.\ 5\\ 0.\ 4\\ 0.\ 4\end{array}$	Yb/ (µg•g ⁻¹) 2.4 2.6 2.5 2.0
_	样品 DMG01 DMG02 DMG03 DMG04 DMG05	$\begin{array}{c} Zr/\\ (\mu g\cdot g^{-1})\\ 95.\ 2\\ 80.\ 2\\ 156.\ 0\\ 79.\ 5\\ 87.\ 1 \end{array}$	$\begin{array}{c} Dy/\\ (\mu g \cdot g^{-1})\\ 4.\ 2\\ 5.\ 2\\ 4.\ 0\\ 3.\ 5\\ 4.\ 2\end{array}$	Er/ (µg•g ⁻¹) 2.6 3.2 2.8 2.3 2.9	Eu/ (µg·g ⁻¹) 1. 1 1. 3 0. 9 1. 1 1. 1	$\begin{array}{c} Gd / \\ (\mu g \! \cdot \! g^{-1}) \\ 5 \\ 5. \ 6 \\ 5. \ 0 \\ 4. \ 4 \\ 4. \ 7 \end{array}$	$\begin{array}{c} Ho \not \\ (\mu g { \cdot } g^{-1}) \\ 0. 8 \\ 1 \\ 0. 8 \\ 0. 7 \\ 0. 8 \end{array}$	$\begin{array}{c} Lu/\\ (\mu g\cdot g^{-1})\\ 0.4\\ 0.5\\ 0.4\\ 0.3\\ 0.4\end{array}$	Nd/ (µg·g ⁻¹) 26. 3 29 29. 0 23. 8 27. 8	Pr/ (µg•g ⁻¹) 6.7 7.1 7.3 6.2 7.0	Sm/ (µg•g ⁻¹) 5. 8 6. 7 6. 0 5. 6 5. 9	Tb∕ (µg•g ⁻¹) 0. 7 0. 8 0. 7 0. 6 0. 7	Tm/ (μg·g ⁻¹) 0. 4 0. 5 0. 4 0. 4 0. 4	Yb/ (µg·g ⁻¹) 2.4 2.6 2.5 2.0 2.5
_	样品 DMG01 DMG02 DMG03 DMG04 DMG05 DMG06	$\begin{array}{c} Zr/\\ (\mu g\cdot g^{-1})\\ 95.2\\ 80.2\\ 156.0\\ 79.5\\ 87.1\\ 127.0\\ \end{array}$	Dy/ (µg·g ⁻¹) 4. 2 5. 2 4. 0 3. 5 4. 2 3. 1	$\begin{array}{c} Er \not \\ (\ \mu g \cdot g^{-1}) \\ \hline 2.\ 6 \\ 3.\ 2 \\ 2.\ 8 \\ 2.\ 3 \\ 2.\ 9 \\ 2.\ 1 \end{array}$	Eu/ (µg·g ⁻¹) 1. 1 1. 3 0. 9 1. 1 1. 1 0. 9	$\begin{array}{c} Gd / \\ (\mu g \cdot g^{-1}) \\ 5 \\ 5.\ 6 \\ 5.\ 0 \\ 4.\ 4 \\ 4.\ 7 \\ 3.\ 7 \end{array}$	$\begin{array}{c} Ho \\ (\ \mu g \cdot g^{-1}) \\ 0. \ 8 \\ 1 \\ 0. \ 8 \\ 0. \ 7 \\ 0. \ 8 \\ 0. \ 7 \\ 0. \ 8 \\ 0. \ 7 \\ \end{array}$	$\begin{array}{c} Lu / \\ (\mu g \! \cdot \! g^{-1}) \\ 0. \ 4 \\ 0. \ 5 \\ 0. \ 4 \\ 0. \ 3 \\ 0. \ 4 \\ 0. \ 3 \end{array}$	$\begin{array}{c} Nd \\ (\ \mu g \cdot g^{-1}) \\ 26. \ 3 \\ 29 \\ 29. \ 0 \\ 23. \ 8 \\ 27. \ 8 \\ 24. \ 7 \end{array}$	$\begin{array}{c} Pr \not \\ (\ \mu g \cdot g^{-1}) \\ \hline 6.\ 7 \\ 7.\ 1 \\ 7.\ 3 \\ 6.\ 2 \\ 7.\ 0 \\ 6.\ 6 \end{array}$	$\begin{array}{c} Sm/\\ (\mu g \! \cdot \! g^{-1}) \\ \hline 5.8 \\ 6.7 \\ 6.0 \\ 5.6 \\ 5.9 \\ 5.1 \end{array}$	$\begin{array}{c} Tb / \\ (\mu g {\cdot} g^{-1}) \\ 0. \ 7 \\ 0. \ 8 \\ 0. \ 7 \\ 0. \ 6 \\ 0. \ 7 \\ 0. \ 5 \end{array}$	Tm/ (µg•g ⁻¹) 0.4 0.5 0.4 0.4 0.4 0.4 0.3	$\begin{array}{c} Yb/\\ (\ \mu g {\scriptstyle \cdot } g^{-1})\\ \hline 2.\ 4\\ 2.\ 6\\ 2.\ 5\\ 2.\ 0\\ 2.\ 5\\ 2.\ 0\\ \end{array}$
_	样品 DMG01 DMG02 DMG03 DMG04 DMG05 DMG06 DMG07	$\begin{array}{c} Zr/\\ (\mu g\cdot g^{-1})\\ 95.2\\ 80.2\\ 156.0\\ 79.5\\ 87.1\\ 127.0\\ 119.0\\ \end{array}$	$\begin{array}{c} Dy/\\ (\mu g \cdot g^{-1})\\ 4.\ 2\\ 5.\ 2\\ 4.\ 0\\ 3.\ 5\\ 4.\ 2\\ 3.\ 1\\ 3.\ 6\end{array}$	$\begin{array}{c} Er/\\ (\mu g\cdot g^{-1})\\ \hline 2.\ 6\\ 3.\ 2\\ 2.\ 8\\ 2.\ 3\\ 2.\ 9\\ 2.\ 1\\ 2.\ 5\end{array}$	Eu/ (µg·g ⁻¹) 1.1 1.3 0.9 1.1 1.1 1.1 0.9 0.9	$\begin{array}{c} Gd \not \\ (\mu g \cdot g^{-1}) \\ 5 \\ 5 . 6 \\ 5 . 0 \\ 4 . 4 \\ 4 . 7 \\ 3 . 7 \\ 4 . 1 \end{array}$	$\begin{array}{c} Ho \\ (\mu g \! \cdot \! g^{-1}) \\ 0. \ 8 \\ 1 \\ 0. \ 8 \\ 0. \ 7 \\ 0. \ 8 \\ 0. \ 7 \\ 0. \ 7 \\ 0. \ 7 \\ 0. \ 7 \\ 0. \ 7 \\ \end{array}$	$\begin{array}{c} Lu / \\ (\mu g \cdot g^{-1}) \\ 0. \ 4 \\ 0. \ 5 \\ 0. \ 4 \\ 0. \ 3 \\ 0. \ 4 \\ 0. \ 3 \\ 0. \ 3 \\ 0. \ 3 \end{array}$	$\begin{array}{c} Nd / \\ (\mu g \cdot g^{-1}) \\ 26.\ 3 \\ 29 \\ 29.\ 0 \\ 23.\ 8 \\ 27.\ 8 \\ 24.\ 7 \\ 26.\ 2 \end{array}$	$\begin{array}{c} Pr \not \\ (\ \mu g \cdot g^{-1}) \\ \hline 6.\ 7 \\ 7.\ 1 \\ 7.\ 3 \\ 6.\ 2 \\ 7.\ 0 \\ 6.\ 6 \\ 6.\ 8 \end{array}$	$\begin{array}{c} Sm/\\ (\mu g {\scriptstyle \cdot} g^{-1})\\ 5. 8\\ 6. 7\\ 6. 0\\ 5. 6\\ 5. 9\\ 5. 1\\ 5. 4\end{array}$	$\begin{array}{c} Tb \not \\ (\mu g {\scriptstyle \cdot } g^{-1}) \\ 0. \ 7 \\ 0. \ 8 \\ 0. \ 7 \\ 0. \ 6 \\ 0. \ 7 \\ 0. \ 5 \\ 0. \ 6 \end{array}$	$\begin{array}{c} Tm / \\ (\mu g \cdot g^{-1}) \\ 0. \ 4 \\ 0. \ 5 \\ 0. \ 4 \\ 0. \ 4 \\ 0. \ 3 \\ 0. \ 3 \\ 0. \ 3 \end{array}$	$\begin{array}{c} Yb \not \\ (\mu g \cdot g^{-1}) \\ \hline 2.\ 4 \\ 2.\ 6 \\ 2.\ 5 \\ 2.\ 0 \\ 2.\ 5 \\ 2.\ 0 \\ 2.\ 1 \end{array}$
_	样品 DMG01 DMG02 DMG03 DMG04 DMG05 DMG06 DMG07 DMG08	$\begin{array}{c} Zr/\\ (\mu g\cdot g^{-1})\\ 95.2\\ 80.2\\ 156.0\\ 79.5\\ 87.1\\ 127.0\\ 119.0\\ 122.0\\ \end{array}$	$\begin{array}{c} Dy/\\ (\mu g \cdot g^{-1})\\ \hline 4.2\\ 5.2\\ 4.0\\ 3.5\\ 4.2\\ 3.1\\ 3.6\\ 4.0\\ \end{array}$	$\begin{array}{c} Er/\\ (\mu g\cdot g^{-1})\\ \hline 2.\ 6\\ 3.\ 2\\ 2.\ 8\\ 2.\ 3\\ 2.\ 9\\ 2.\ 1\\ 2.\ 5\\ 2.\ 5\\ \end{array}$	Eu/ (μg·g ⁻¹) 1.1 1.3 0.9 1.1 1.1 1.1 0.9 0.9 1.2	$\begin{array}{c} Gd \not \\ (\mu g \cdot g^{-1}) \\ 5 \\ 5 . 6 \\ 5 . 0 \\ 4 . 4 \\ 4 . 7 \\ 3 . 7 \\ 4 . 1 \\ 4 . 3 \end{array}$	$\begin{array}{c} Ho \not \\ (\mu g \cdot g^{-1}) \\ 0. \ 8 \\ 1 \\ 0. \ 8 \\ 0. \ 7 \\ 0. \ 8 \\ 0. \ 7 \\ 0. \ 7 \\ 0. \ 7 \\ 0. \ 7 \\ 0. \ 7 \\ 0. \ 7 \\ 0. \ 7 \\ \end{array}$	$\begin{array}{c} Lu \checkmark \\ (\mu g \cdot g^{-1}) \\ 0. \ 4 \\ 0. \ 5 \\ 0. \ 4 \\ 0. \ 3 \\ 0. \ 3 \\ 0. \ 3 \\ 0. \ 3 \\ 0. \ 3 \end{array}$	$\begin{array}{c} Nd \\ (\ \mu g \cdot g^{-1}) \\ 26.\ 3 \\ 29 \\ 29.\ 0 \\ 23.\ 8 \\ 27.\ 8 \\ 24.\ 7 \\ 26.\ 2 \\ 27.\ 4 \end{array}$	$\begin{array}{c} Pr \not \\ (\mu g \cdot g^{-1}) \\ \hline 6.\ 7 \\ 7.\ 1 \\ 7.\ 3 \\ 6.\ 2 \\ 7.\ 0 \\ 6.\ 6 \\ 6.\ 8 \\ 7.\ 2 \end{array}$	$\begin{array}{c} Sm/\\ (\mu g\cdot g^{-1})\\ \overline{5.8}\\ 6.7\\ 6.0\\ \overline{5.6}\\ 5.9\\ 5.1\\ \overline{5.4}\\ 5.7\end{array}$	$\begin{array}{c} Tb / \\ (\mu g \! \cdot \! g^{-1}) \\ 0. \ 7 \\ 0. \ 8 \\ 0. \ 7 \\ 0. \ 6 \\ 0. \ 7 \\ 0. \ 5 \\ 0. \ 6 \\ 0. \ 7 \\ 0. \ 7 \\ \end{array}$	$\begin{array}{c} Tm/\\ (\mu g\cdot g^{-1})\\ 0.4\\ 0.5\\ 0.4\\ 0.4\\ 0.4\\ 0.3\\ 0.3\\ 0.3\\ 0.4\\ \end{array}$	$\begin{array}{c} Yb \not \\ (\mu g \cdot g^{-1}) \\ 2.\ 4 \\ 2.\ 6 \\ 2.\ 5 \\ 2.\ 0 \\ 2.\ 5 \\ 2.\ 0 \\ 2.\ 1 \\ 2.\ 2 \end{array}$
_	样品 DMG01 DMG02 DMG03 DMG04 DMG05 DMG06 DMG07 DMG08 DMG09	$\begin{array}{c} Zr/\\ (\mu g\cdot g^{-1})\\ 95.2\\ 80.2\\ 156.0\\ 79.5\\ 87.1\\ 127.0\\ 119.0\\ 122.0\\ 147.5\\ \end{array}$	$\begin{array}{c} Dy / \\ (\ \mu g \cdot g^{-1}) \\ 4.\ 2 \\ 5.\ 2 \\ 4.\ 0 \\ 3.\ 5 \\ 4.\ 2 \\ 3.\ 1 \\ 3.\ 6 \\ 4.\ 0 \\ 3.\ 8 \end{array}$	$\begin{array}{c} Er/\\ (\mu g\cdot g^{-1})\\ \hline 2.\ 6\\ 3.\ 2\\ 2.\ 8\\ 2.\ 3\\ 2.\ 9\\ 2.\ 1\\ 2.\ 5\\ 2.\ 5\\ 2.\ 5\\ 2.\ 5\end{array}$	Eu/ (μg·g ⁻¹) 1.1 1.3 0.9 1.1 1.3 0.9 1.1 1.2 1.0	$\begin{array}{c} Gd \not \\ (\mu g \cdot g^{-1}) \\ 5 \\ 5. 6 \\ 5. 0 \\ 4. 4 \\ 4. 7 \\ 3. 7 \\ 4. 1 \\ 4. 3 \\ 4. 6 \end{array}$	$\begin{array}{c} Ho \not \\ (\mu g \cdot g^{-1}) \\ 0. \ 8 \\ 1 \\ 0. \ 8 \\ 0. \ 7 \\ 0. \ 8 \\ 0. \ 7 \\ 0. \ 7 \\ 0. \ 7 \\ 0. \ 7 \\ 0. \ 8 \end{array}$	$\begin{array}{c} Lu \checkmark \\ (\mu g \cdot g^{-1}) \\ 0. \ 4 \\ 0. \ 5 \\ 0. \ 4 \\ 0. \ 3 \\ 0. \ 3 \\ 0. \ 3 \\ 0. \ 3 \\ 0. \ 3 \\ 0. \ 3 \end{array}$	$\begin{array}{c} Nd \\ (\ \mu g \cdot g^{-1}) \\ 26.\ 3 \\ 29 \\ 29.\ 0 \\ 23.\ 8 \\ 27.\ 8 \\ 24.\ 7 \\ 26.\ 2 \\ 27.\ 4 \\ 28.\ 4 \end{array}$	$\begin{array}{c} Pr \not \\ (\mu g \cdot g^{-1}) \\ \hline 6.\ 7 \\ 7.\ 1 \\ 7.\ 3 \\ 6.\ 2 \\ 7.\ 0 \\ 6.\ 6 \\ 6.\ 8 \\ 7.\ 2 \\ 7.\ 5 \end{array}$	$\begin{array}{c} Sm/\\ (\mu g\cdot g^{-1})\\ \overline{5.8}\\ 6.7\\ 6.0\\ \overline{5.6}\\ 5.9\\ 5.1\\ 5.4\\ 5.7\\ 6.0\\ \end{array}$	$\begin{array}{c} Tb/\\ (\mu g^{} \cdot g^{-1})\\ 0,7\\ 0,8\\ 0,7\\ 0,6\\ 0,7\\ 0,5\\ 0,6\\ 0,7\\ 0,6\\ \end{array}$	$\begin{array}{c} Tm/\\ (\mu g\cdot g^{-1})\\ 0.4\\ 0.5\\ 0.4\\ 0.4\\ 0.4\\ 0.3\\ 0.3\\ 0.4\\ 0.4\\ 0.4\end{array}$	$\begin{array}{c} Yb \not \\ (\mu g \cdot g^{-1}) \\ \hline 2. 4 \\ 2. 6 \\ 2. 5 \\ 2. 0 \\ 2. 5 \\ 2. 0 \\ 2. 1 \\ 2. 2 \\ 2. 3 \end{array}$
_	样品 DMG01 DMG02 DMG03 DMG04 DMG05 DMG06 DMG06 DMG07 DMG08 DMG09 DMG10	$\begin{array}{c} Zr/\\ (\mu g\cdot g^{-1})\\ 95.2\\ 80.2\\ 156.0\\ 79.5\\ 87.1\\ 127.0\\ 119.0\\ 122.0\\ 147.5\\ 131.0\\ \end{array}$	$\begin{array}{c} Dy / \\ (\ \mu g \cdot g^{-1}) \\ 4.2 \\ 5.2 \\ 4.0 \\ 3.5 \\ 4.2 \\ 3.1 \\ 3.6 \\ 4.0 \\ 3.8 \\ 3.7 \end{array}$	$\begin{array}{c} Er/\\ (\mu g\cdot g^{-1})\\ 2.\ 6\\ 3.\ 2\\ 2.\ 8\\ 2.\ 3\\ 2.\ 9\\ 2.\ 1\\ 2.\ 5\\ 2.\ 5\\ 2.\ 5\\ 2.\ 6\end{array}$	Eu/ (μg·g ⁻¹) 1.1 1.3 0.9 1.1 1.3 0.9 1.1 1.2 1.0 1.2 1.0	$\begin{array}{c} Gd \not \\ (\mu g \cdot g^{-1}) \\ 5 \\ 5. 6 \\ 5. 0 \\ 4. 4 \\ 4. 7 \\ 3. 7 \\ 4. 1 \\ 4. 3 \\ 4. 6 \\ 4. 3 \end{array}$	$\begin{array}{c} Ho \not \\ (\mu g \cdot g^{-1}) \\ 0. \ 8 \\ 1 \\ 0. \ 8 \\ 0. \ 7 \\ 0. \ 8 \\ 0. \ 7 \\ 0. \ 7 \\ 0. \ 7 \\ 0. \ 8 \\ 0. \ 7 \\ 0. \ 8 \\ 0. \ 8 \\ 0. \ 8 \\ 0. \ 8 \end{array}$	$\begin{array}{c} Lu \checkmark \\ (\mu g \cdot g^{-1}) \\ 0.\ 4 \\ 0.\ 5 \\ 0.\ 4 \\ 0.\ 3 \\ 0.\ 3 \\ 0.\ 3 \\ 0.\ 3 \\ 0.\ 3 \\ 0.\ 3 \\ 0.\ 3 \end{array}$	$\begin{array}{c} Nd \\ (\ \mu g \cdot g^{-1}) \\ 26.\ 3 \\ 29 \\ 29.\ 0 \\ 23.\ 8 \\ 27.\ 8 \\ 24.\ 7 \\ 26.\ 2 \\ 27.\ 4 \\ 28.\ 4 \\ 26.\ 6 \end{array}$	$\begin{array}{c} Pr \not \\ (\mu g \cdot g^{-1}) \\ \hline 6.\ 7 \\ 7.\ 1 \\ 7.\ 3 \\ 6.\ 2 \\ 7.\ 0 \\ 6.\ 6 \\ 6.\ 8 \\ 7.\ 2 \\ 7.\ 5 \\ 6.\ 8 \end{array}$	$\begin{array}{c} Sm/\\ (\mu g\cdot g^{-1})\\ 5.8\\ 6.7\\ 6.0\\ 5.6\\ 5.9\\ 5.1\\ 5.4\\ 5.7\\ 6.0\\ 5.7\\ 6.0\\ 5.7\end{array}$	$\begin{array}{c} Tb/\\ (\mu g^{} \cdot g^{-1})\\ 0,7\\ 0,8\\ 0,7\\ 0,6\\ 0,7\\ 0,6\\ 0,7\\ 0,6\\ 0,7\\ 0,6\\ 0,6\\ \end{array}$	$\begin{array}{c} Tm/\\ (\mu g\cdot g^{-1})\\ \hline 0.\ 4\\ 0.\ 5\\ 0.\ 4\\ 0.\ 4\\ 0.\ 4\\ 0.\ 3\\ 0.\ 3\\ 0.\ 4\\ 0.\ 4\\ 0.\ 4\\ 0.\ 4\\ 0.\ 4\\ 0.\ 4\\ \end{array}$	$\begin{array}{c} Yb \not \\ (\ \mu g \cdot g^{-1}) \\ \hline 2.\ 4 \\ 2.\ 6 \\ 2.\ 5 \\ 2.\ 0 \\ 2.\ 5 \\ 2.\ 0 \\ 2.\ 1 \\ 2.\ 2 \\ 2.\ 3 \\ 2.\ 2 \end{array}$
_	样品 DMG01 DMG02 DMG03 DMG04 DMG05 DMG06 DMG07 DMG08 DMG09 DMG10 DMG11	$\begin{array}{c} Zr/\\ (\mu g\cdot g^{-1})\\ 95.2\\ 80.2\\ 156.0\\ 79.5\\ 87.1\\ 127.0\\ 119.0\\ 122.0\\ 147.5\\ 131.0\\ 103.5\\ \end{array}$	$\begin{array}{c} Dy \not \\ (\ \mu g \cdot g^{-1}) \\ 4.\ 2 \\ 5.\ 2 \\ 4.\ 0 \\ 3.\ 5 \\ 4.\ 2 \\ 3.\ 1 \\ 3.\ 6 \\ 4.\ 0 \\ 3.\ 8 \\ 3.\ 7 \\ 5.\ 3 \end{array}$	$\begin{array}{c} Er/\\ (\mu g\cdot g^{-1})\\ \hline 2.\ 6\\ 3.\ 2\\ 2.\ 8\\ 2.\ 3\\ 2.\ 9\\ 2.\ 1\\ 2.\ 5\\ 2.\ 5\\ 2.\ 5\\ 2.\ 6\\ 3.\ 0\\ \end{array}$	Eu/ (μg·g ⁻¹) 1.1 1.3 0.9 1.1 1.1 0.9 0.9 1.2 1.0 1.0 1.2	$\begin{array}{c} Gd \not \\ (\mu g \cdot g^{-1}) \\ 5 \\ 5.6 \\ 5.0 \\ 4.4 \\ 4.7 \\ 3.7 \\ 4.1 \\ 4.3 \\ 4.6 \\ 4.3 \\ 5.7 \end{array}$	$\begin{array}{c} Ho \not \\ (\mu g \cdot g^{-1}) \\ 0. \ 8 \\ 1 \\ 0. \ 8 \\ 0. \ 7 \\ 0. \ 8 \\ 0. \ 7 \\ 0. \ 7 \\ 0. \ 7 \\ 0. \ 7 \\ 0. \ 8 \\ 1. \ 0 \end{array}$	$\begin{array}{c} Lu \checkmark \\ (\ \mu g \cdot g^{-1}) \\ \hline 0.\ 4 \\ 0.\ 5 \\ 0.\ 4 \\ 0.\ 3 \\ 0.\ 4 \\ 0.\ 3 \\ 0.\ 3 \\ 0.\ 3 \\ 0.\ 3 \\ 0.\ 4 \end{array}$	$\begin{array}{c} Nd \\ (\ \mu g \cdot g^{-1}) \\ 26.\ 3 \\ 29 \\ 29.\ 0 \\ 23.\ 8 \\ 27.\ 8 \\ 24.\ 7 \\ 26.\ 2 \\ 27.\ 4 \\ 28.\ 4 \\ 26.\ 6 \\ 29.\ 6 \end{array}$	$\begin{array}{c} Pr/\\ (\mu g\cdot g^{-1})\\ 6.\ 7\\ 7.\ 1\\ 7.\ 3\\ 6.\ 2\\ 7.\ 0\\ 6.\ 6\\ 6.\ 8\\ 7.\ 2\\ 7.\ 5\\ 6.\ 8\\ 6.\ 3\end{array}$	$\begin{array}{c} Sm/\\ (\mu g\cdot g^{-1})\\ \hline 5.8\\ 6.7\\ 6.0\\ 5.6\\ 5.9\\ 5.1\\ 5.4\\ 5.7\\ 6.0\\ 5.7\\ 6.4\\ \end{array}$	$\begin{array}{c} Tb/\\(\mu g\cdot g^{-1})\\ 0.7\\ 0.8\\ 0.7\\ 0.6\\ 0.7\\ 0.5\\ 0.6\\ 0.7\\ 0.6\\ 0.6\\ 0.6\\ 0.9\end{array}$	$\begin{array}{c} Tm \not \\ (\mu g \cdot g^{-1}) \\ 0. \ 4 \\ 0. \ 5 \\ 0. \ 4 \\ 0. \ 4 \\ 0. \ 3 \\ 0. \ 3 \\ 0. \ 4 \\ 0. \ 4 \\ 0. \ 4 \\ 0. \ 5 \end{array}$	$\begin{array}{r} Yb/\\ (\mu g \cdot g^{-1})\\ \hline 2.4\\ 2.6\\ 2.5\\ 2.0\\ 2.5\\ 2.0\\ 2.5\\ 2.0\\ 2.1\\ 2.2\\ 2.3\\ 2.2\\ 2.9\end{array}$
_	样品 DMG01 DMG02 DMG03 DMG04 DMG05 DMG05 DMG06 DMG07 DMG08 DMG09 DMG10 DMG11 DMG12	$\begin{array}{c} Zr/\\ (\mu g\cdot g^{-1})\\ 95.2\\ 80.2\\ 156.0\\ 79.5\\ 87.1\\ 127.0\\ 119.0\\ 122.0\\ 147.5\\ 131.0\\ 103.5\\ 134.5\\ \end{array}$	$\begin{array}{c} Dy \not \\ (\mu g \cdot g^{-1}) \\ 4.2 \\ 5.2 \\ 4.0 \\ 3.5 \\ 4.2 \\ 3.1 \\ 3.6 \\ 4.0 \\ 3.8 \\ 3.7 \\ 5.3 \\ 3.6 \end{array}$	$\begin{array}{c} Er/\\ (\mu g\cdot g^{-1})\\ \hline 2.\ 6\\ 3.\ 2\\ 2.\ 8\\ 2.\ 3\\ 2.\ 9\\ 2.\ 1\\ 2.\ 5\\ 2.\ 5\\ 2.\ 5\\ 2.\ 5\\ 2.\ 6\\ 3.\ 0\\ 1.\ 9 \end{array}$	Eu/ (μg·g ⁻¹) 1.1 1.3 0.9 1.1 1.1 0.9 0.9 1.2 1.0 1.0 1.2 0.9	$\begin{array}{c} Gd / \\ (\mu g \cdot g^{-1}) \\ 5 \\ 5.6 \\ 5.0 \\ 4.4 \\ 4.7 \\ 3.7 \\ 4.1 \\ 4.3 \\ 4.6 \\ 4.3 \\ 5.7 \\ 4.2 \\ \end{array}$	$\begin{array}{c} Ho \not \\ (\mu g \cdot g^{-1}) \\ 0. \ 8 \\ 1 \\ 0. \ 8 \\ 0. \ 7 \\ 0. \ 8 \\ 0. \ 7 \\ 0. \ 7 \\ 0. \ 7 \\ 0. \ 8 \\ 0. \ 8 \\ 1. \ 0 \\ 0. \ 7 \\ 0. \ 7 \\ \end{array}$	$\begin{array}{c} Lu \checkmark \\ (\mu g \cdot g^{-1}) \\ 0. \ 4 \\ 0. \ 5 \\ 0. \ 4 \\ 0. \ 3 \\ 0. \ 4 \\ 0. \ 3 \\ 0. \ 0. \ 0. \ 0 \\ 0. \ 0 \\ 0. \ 0 \\ 0. \ 0 \\ 0. \ 0 \ 0 \\ 0. \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$	$\begin{array}{c} Nd / \\ (\ \mu g \cdot g^{-1}) \\ 26.\ 3 \\ 29 \\ 29.\ 0 \\ 23.\ 8 \\ 27.\ 8 \\ 24.\ 7 \\ 26.\ 2 \\ 27.\ 4 \\ 28.\ 4 \\ 26.\ 6 \\ 29.\ 6 \\ 28.\ 7 \\ \end{array}$	$\begin{array}{c} Pr/\\ (\mu g\cdot g^{-1})\\ 6.\ 7\\ 7.\ 1\\ 7.\ 3\\ 6.\ 2\\ 7.\ 0\\ 6.\ 6\\ 6.\ 8\\ 7.\ 2\\ 7.\ 5\\ 6.\ 8\\ 6.\ 3\\ 6.\ 7\end{array}$	$\begin{array}{c} Sm/\\ (\mu g\cdot g^{-1})\\ \hline 5.8\\ 6.7\\ 6.0\\ 5.6\\ 5.9\\ 5.1\\ 5.4\\ 5.7\\ 6.0\\ 5.7\\ 6.4\\ 5.0\\ \end{array}$	$\begin{array}{c} Tb/\\ (\mu g^{}\cdot g^{-1})\\ 0.7\\ 0.8\\ 0.7\\ 0.6\\ 0.7\\ 0.5\\ 0.6\\ 0.7\\ 0.6\\ 0.6\\ 0.9\\ 0.7\\ \end{array}$	$\begin{array}{c} Tm \not \\ (\mu g \! \cdot g^{-1}) \\ 0. \ 4 \\ 0. \ 5 \\ 0. \ 4 \\ 0. \ 4 \\ 0. \ 3 \\ 0. \ 3 \\ 0. \ 4 \\ 0. \ 4 \\ 0. \ 5 \\ 0. \ 3 \\ 0. \ 3 \\ \end{array}$	$\begin{array}{c} Yb \not \\ (\mu g \cdot g^{-1}) \\ \hline 2.4 \\ 2.6 \\ 2.5 \\ 2.0 \\ 2.5 \\ 2.0 \\ 2.5 \\ 2.0 \\ 2.1 \\ 2.2 \\ 2.3 \\ 2.2 \\ 2.9 \\ 1.9 \end{array}$
_	样品 DMG01 DMG02 DMG03 DMG04 DMG05 DMG06 DMG07 DMG08 DMG09 DMG10 DMG11 DMG12 DMG13	$\begin{array}{c} Zr/\\ (\mu g\cdot g^{-1})\\ 95.2\\ 80.2\\ 156.0\\ 79.5\\ 87.1\\ 127.0\\ 119.0\\ 122.0\\ 147.5\\ 131.0\\ 103.5\\ 134.5\\ 137.5\\ \end{array}$	$\begin{array}{c} Dy / \\ (\mu g \cdot g^{-1}) \\ 4.2 \\ 5.2 \\ 4.0 \\ 3.5 \\ 4.2 \\ 3.1 \\ 3.6 \\ 4.0 \\ 3.8 \\ 3.7 \\ 5.3 \\ 3.6 \\ 3.9 \\ \end{array}$	$\begin{array}{c} Er/\\ (\mu g\cdot g^{-1})\\ \hline 2.\ 6\\ 3.\ 2\\ 2.\ 8\\ 2.\ 3\\ 2.\ 9\\ 2.\ 1\\ 2.\ 5\\ 2.\ 5\\ 2.\ 5\\ 2.\ 5\\ 2.\ 6\\ 3.\ 0\\ 1.\ 9\\ 2.\ 2\\ \end{array}$	Eu/ (μg·g ⁻¹) 1.1 1.3 0.9 1.1 1.1 0.9 0.9 1.2 1.0 1.0 1.2 0.9 1.0 9 1.2	$\begin{array}{c} Gd /\\ (\mu g \cdot g^{-1}) \\ 5 \\ 5.6 \\ 5.0 \\ 4.4 \\ 4.7 \\ 3.7 \\ 4.1 \\ 4.3 \\ 4.6 \\ 4.3 \\ 5.7 \\ 4.2 \\ 4.0 \end{array}$	$\begin{array}{c} Ho \not \\ (\mu g \cdot g^{-1}) \\ 0. \ 8 \\ 1 \\ 0. \ 8 \\ 0. \ 7 \\ 0. \ 8 \\ 0. \ 7 \\ 0. \ 7 \\ 0. \ 7 \\ 0. \ 8 \\ 1. \ 0 \\ 0. \ 7 \\ 0. \ 8 \\ 1. \ 0 \\ 0. \ 7 \\ 0. \ 8 \\ 1. \ 0 \\ 0. \ 7 \\ 0. \ 8 \\ 1. \ 0 \\ 0. \ 7 \\ 0. \ 8 \\ 1. \ 0 \\ 0. \ 7 \\ 0. \ 8 \\ 1. \ 0 \\ 0. \ 7 \\ 0. \ 8 \\ 1. \ 0 \\ 0. \ 7 \\ 0. \ 8 \\ 1. \ 0 \\ 0. \ 7 \\ 0. \ 8 \\ 1. \ 0 \\ 0. \ 7 \\ 0. \ 8 \\ 1. \ 0 \\ 0. \ 7 \\ 0. \ 8 \\ 1. \ 0 \\ 0. \ 7 \\ 0. \ 8 \\ 1. \ 0 \\ 0. \ 7 \\ 0. \ 8 \\ 1. \ 0 \\ 0. \ 7 \\ 0. \ 8 \\ 1. \ 0 \\ 0. \ 7 \\ 0. \ 8 \\ 1. \ 0 \\ 0. \ 7 \\ 0. \ 8 \\ 0. \ 8 \\ 1. \ 0 \\ 0. \ 7 \\ 0. \ 8 \\ 0. $	$\begin{matrix} Lu \checkmark \\ (\mu g \cdot g^{-1}) \\ 0. \ 4 \\ 0. \ 5 \\ 0. \ 4 \\ 0. \ 3 \\ 0. \ 0 \\ 0. \ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$\begin{array}{c} Nd / \\ (\mu g \cdot g^{-1}) \\ 26. 3 \\ 29 \\ 29. 0 \\ 23. 8 \\ 27. 8 \\ 24. 7 \\ 26. 2 \\ 27. 4 \\ 28. 4 \\ 26. 6 \\ 29. 6 \\ 28. 7 \\ 25. 4 \end{array}$	$\begin{array}{c} Pr/\\ (\mu g\cdot g^{-1})\\ 6.\ 7\\ 7.\ 1\\ 7.\ 3\\ 6.\ 2\\ 7.\ 0\\ 6.\ 6\\ 6.\ 8\\ 7.\ 2\\ 7.\ 5\\ 6.\ 8\\ 6.\ 3\\ 6.\ 7\\ 5.\ 7\end{array}$	$\begin{array}{c} Sm/\\ (\mu g\cdot g^{-1})\\ \overline{5,8}\\ 6,7\\ 6,0\\ \overline{5,6}\\ 5,9\\ \overline{5,1}\\ 5,4\\ \overline{5,7}\\ 6,0\\ \overline{5,7}\\ 6,4\\ \overline{5,0}\\ 4,8 \end{array}$	$\begin{array}{c} Tb/\\ (\mu g^{}\cdot g^{-1})\\ 0.7\\ 0.8\\ 0.7\\ 0.6\\ 0.7\\ 0.5\\ 0.6\\ 0.7\\ 0.6\\ 0.6\\ 0.9\\ 0.7\\ 0.6\\ \end{array}$	$\begin{array}{c} Tm \not \\ (\mu g \! \cdot \! g^{-1}) \\ 0. \ 4 \\ 0. \ 5 \\ 0. \ 4 \\ 0. \ 4 \\ 0. \ 3 \\ 0. \ 3 \\ 0. \ 4 \\ 0. \ 4 \\ 0. \ 4 \\ 0. \ 5 \\ 0. \ 3 \\ 0. \ 4 \\ 0. \ 4 \\ 0. \ 5 \\ 0. \ 3 \\ 0. \ 4 \\ 0. \ 4 \\ 0. \ 5 \\ 0. \ 3 \\ 0. \ 4 \\ 0. \ 4 \\ 0. \ 5 \\ 0. \ 3 \\ 0. \ 4 \\ 0. \ 5 \\ 0. \ 3 \\ 0. \ 4 \\ 0. \ 5 \\ 0. \ 3 \\ 0. \ 4 \\ 0. \ 5 \\ 0. \ 3 \\ 0. \ 4 \\ 0. \ 5 \\ 0. \ 3 \\ 0. \ 4 \\ 0. \ 5 \\ 0. \ 3 \\ 0. \ 4 \\ 0. \ 5 \\ 0. \ 3 \\ 0. \ 4 \\ 0. \ 5 \\ 0. \ 3 \\ 0. \ 4 \\ 0. \ 5 \\ 0. \ 3 \\ 0. \ 4 \\ 0. \ 5 \\ 0. \ 3 \\ 0. \ 4 \\ 0. \ 5 \\ 0. \ 3 \\ 0. \ 4 \\ 0. \ 5 \\ 0. \ 3 \\ 0. \ 4 \\ 0. \ 5 \\ 0. \ 3 \\ 0. \ 4 \\ 0. \ 5 \\ 0. \ 3 \\ 0. \ 4 \\ 0. \ 5 \\ 0. \ 3 \\ 0. \ 4 \\ 0. \ 5 \\ 0. \ 3 \\ 0. \ 4 \\ 0. \ 5 \\ 0. \ 3 \\ 0. \ 4 \\ 0. \ 5 \\ 0. \ 3 \\ 0. \ 4 \\ 0. \ 5 \\ 0. \ 3 \\ 0. \ 4 \\ 0. \ 5 \\ 0. $	$\begin{array}{c} Yb \not \\ (\mu g \cdot g^{-1}) \\ \hline 2.4 \\ 2.6 \\ 2.5 \\ 2.0 \\ 2.5 \\ 2.0 \\ 2.5 \\ 2.0 \\ 2.1 \\ 2.2 \\ 2.3 \\ 2.2 \\ 2.9 \\ 1.9 \\ 2.2 \end{array}$
_	样品 DMG01 DMG02 DMG03 DMG04 DMG05 DMG06 DMG07 DMG08 DMG09 DMG10 DMG11 DMG12 DMG13 DMG14	$\begin{array}{c} Zr/\\ (\mu g\cdot g^{-1})\\ 95.2\\ 80.2\\ 156.0\\ 79.5\\ 87.1\\ 127.0\\ 119.0\\ 122.0\\ 147.5\\ 131.0\\ 103.5\\ 134.5\\ 137.5\\ 107\\ \end{array}$	$\begin{array}{c} Dy / \\ (\mu g \cdot g^{-1}) \\ 4.\ 2 \\ 5.\ 2 \\ 4.\ 0 \\ 3.\ 5 \\ 4.\ 2 \\ 3.\ 1 \\ 3.\ 6 \\ 4.\ 0 \\ 3.\ 8 \\ 3.\ 7 \\ 5.\ 3 \\ 3.\ 6 \\ 3.\ 9 \\ 4.\ 3 \end{array}$	$\begin{array}{c} Er/\\ (\mu g\cdot g^{-1})\\ \hline 2.\ 6\\ 3.\ 2\\ 2.\ 8\\ 2.\ 3\\ 2.\ 9\\ 2.\ 1\\ 2.\ 5\\ 2.\ 5\\ 2.\ 5\\ 2.\ 5\\ 2.\ 6\\ 3.\ 0\\ 1.\ 9\\ 2.\ 2\\ 2.\ 5\\ \end{array}$	Eu/ (μg·g ⁻¹) 1.1 1.3 0.9 1.1 1.1 0.9 0.9 1.2 1.0 1.0 1.2 0.9 1.0 1.2 0.9 1.0 1.2	$\begin{array}{c} Gd \not \\ (\mu g \cdot g^{-1}) \\ 5 \\ 5. 6 \\ 5. 0 \\ 4. 4 \\ 4. 7 \\ 3. 7 \\ 4. 1 \\ 4. 3 \\ 4. 6 \\ 4. 3 \\ 5. 7 \\ 4. 2 \\ 4. 0 \\ 4. 6 \end{array}$	$\begin{array}{c} Ho \not \\ (\mu g \cdot g^{-1}) \\ 0.8 \\ 1 \\ 0.8 \\ 0.7 \\ 0.8 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.8 \\ 0.8 \\ 1.0 \\ 0.7 \\ 0.8 \\ 1.0 \\ 0.7 \\ 0.8 \\ 0.8 \\ 1.0 \\ 0.7 \\ 0.8 \\ $	$\begin{matrix} Lu \checkmark \\ (\ \mu g \cdot g^{-1}) \\ 0. \ 4 \\ 0. \ 5 \\ 0. \ 4 \\ 0. \ 3 \\ 0. \ 3 \\ 0. \ 3 \\ 0. \ 3 \\ 0. \ 3 \\ 0. \ 3 \\ 0. \ 3 \\ 0. \ 3 \\ 0. \ 3 \\ 0. \ 3 \\ 0. \ 3 \\ 0. \ 3 \\ 0. \ 3 \\ 0. \ 3 \\ 0. \ 3 \\ 0. \ 3 \\ 0. \ 3 \\ 0. \ 4 \\ 0. \ 3 \\ 0. \ 3 \\ 0. \ 4 \\ 0. \ 4 \\ 0. \ 3 \\ 0. \ 4 \\ 0. \ 1 \\ $	$\begin{array}{c} Nd \\ (\ \mu g \cdot g^{-1}) \\ 26.\ 3 \\ 29 \\ 29.\ 0 \\ 23.\ 8 \\ 27.\ 8 \\ 24.\ 7 \\ 26.\ 2 \\ 27.\ 4 \\ 28.\ 4 \\ 26.\ 6 \\ 29.\ 6 \\ 28.\ 7 \\ 25.\ 4 \\ 29.\ 8 \end{array}$	$\begin{array}{c} Pr/\\ (\mu g\cdot g^{-1})\\ 6.\ 7\\ 7.\ 1\\ 7.\ 3\\ 6.\ 2\\ 7.\ 0\\ 6.\ 6\\ 6.\ 8\\ 7.\ 2\\ 7.\ 5\\ 6.\ 8\\ 6.\ 3\\ 6.\ 7\\ 5.\ 7\\ 6.\ 8\end{array}$	$\begin{array}{c} Sm/\\ (\mu g\cdot g^{-1})\\ \overline{5,8}\\ 6,7\\ 6,0\\ \overline{5,6}\\ 5,9\\ 5,1\\ \overline{5,4}\\ 5,7\\ 6,0\\ \overline{5,7}\\ 6,4\\ \overline{5,0}\\ 4,8\\ 5,4\\ \end{array}$	$\begin{array}{c} Tb/\\ (\mu g^{} \cdot g^{-1})\\ 0,7\\ 0,8\\ 0,7\\ 0,6\\ 0,7\\ 0,5\\ 0,6\\ 0,7\\ 0,6\\ 0,6\\ 0,9\\ 0,7\\ 0,6\\ 0,9\\ 0,7\\ 0,6\\ 0,8\\ \end{array}$	$\begin{array}{c} Tm / \\ (\mu g \cdot g^{-1}) \\ 0. \ 4 \\ 0. \ 5 \\ 0. \ 4 \\ 0. \ 4 \\ 0. \ 3 \\ 0. \ 3 \\ 0. \ 4 \\ 0. \ 4 \\ 0. \ 4 \\ 0. \ 4 \\ 0. \ 5 \\ 0. \ 3 \\ 0. \ 4$	$\begin{array}{c} Yb/\\ (\mu g\cdot g^{-1})\\ \hline 2.\ 4\\ 2.\ 6\\ 2.\ 5\\ 2.\ 0\\ 2.\ 5\\ 2.\ 0\\ 2.\ 5\\ 2.\ 0\\ 2.\ 1\\ 2.\ 2\\ 2.\ 3\\ 2.\ 2\\ 2.\ 9\\ 1.\ 9\\ 2.\ 2\\ 2.\ 4\\ \end{array}$

投口	Nb/	Ni/	Pb/	Rb/	Sc/	Sr/	Ta/	Th/	Ti/	U/	V/	Y/	Zn/
件印	$(\mu g\boldsymbol{\cdot} g^{-1})$												
DMG01	95.2	62.6	4.2	2.6	1.1	5.0	0.8	0.4	26.3	6.7	5.8	0.4	2.4
DMG02	80.2	64.5	5.2	3.2	1.3	5.6	1.0	0.5	29.0	7.1	6.7	0.5	2.6
DMG03	156.0	66.9	4.0	2.8	0.9	5.0	0.8	0.4	29.0	7.3	6	0.4	2.5
DMG04	79.5	54.4	3.5	2.3	1.1	4.4	0.7	0.3	23.8	6.2	5.6	0.4	2.0
DMG05	87.1	62.2	4.2	2.9	1.1	4.7	0.8	0.4	27.8	7.0	5.9	0.4	2.5
DMG06	127.0	60.4	3.1	2.1	0.9	3.7	0.7	0.3	24.7	6.6	5.1	0.3	2.0
DMG07	119.0	62.5	3.6	2.5	0.9	4.1	0.7	0.3	26.2	6.8	5.4	0.3	2.1
DMG08	122.0	66.2	4.0	2.5	1.2	4.3	0.7	0.3	27.4	7.2	5.7	0.4	2.2
DMG09	147.5	67.2	3.8	2.5	1.0	4.6	0.8	0.3	28.4	7.5	6.0	0.4	2.3
DMG10	131.0	63.4	3.7	2.6	1.0	4.3	0.8	0.3	26.6	6.8	5.7	0.4	2.2
DMG11	103.5	61.9	5.3	3.0	1.2	5.7	1.0	0.4	29.6	6.3	6.4	0.5	2.9
DMG12	134.5	69.2	3.6	1.9	0.9	4.2	0.7	0.3	28.7	6.7	5.0	0.3	1.9
DMG13	137.5	57.9	3.9	2.2	1.0	4.0	0.8	0.3	25.4	5.7	4.8	0.4	2.2
DMG14	107.0	68.3	4.3	2.5	1.2	4.6	0.8	0.4	29.8	6.8	5.4	0.4	2.4
DMG15	113.0	64.7	4.0	2.2	1.1	4.7	0.8	0.3	29.1	6.3	5.5	0.3	2.2

2 主量元素地球化学特征

主量元素测试结果(表 2)表明,石灰沟组砂岩 SiO₂含量中等偏高,分布在 65.79% ~ 80.97%,平 均 74.48%; Al₂O₃/SiO₂在 0.12% ~ 0.21%,平均 0.14%; K₂O/Na₂O 值偏高(1.16% ~ 2.57%),表明 岩石形成过程中存在富钾碱性长石矿物的摄入,这 与长石风化过程中钾交代有关; Al₂O₃含量为 7.2% ~ 14.2%,平均 10.35%,明显低于大陆上地壳 (15.2%)^[56],说明测试样品黏土矿物含量较低,也 暗示样品中的杂基主要为极细的长英质碎屑颗粒; TFe₂O₃+MgO 中等,最大为 9.37%,最小为 3.37%, 平均为 5.92%。

样品 CIA 指数平均为 64.2,说明源区的风化程度中等偏低^[6],A-CN-K 图解表明源区风化主要发生长石向黏土矿物的转化(图 3(a))。ICV 指数在0.83~1.45,大部分大于1,CIA 及 ICV 指数均表明该复理石属构造活动背景下的初始沉积^[5-6],风化沉积和成岩—后生作用对主量元素保存的源区信息影响不大。

从主量元素含量及元素比值来看,石灰沟组砂 岩成分成熟度中等。在 Roser 等^[7-8]的 SiO,-K,O/ Na,O图解上,样品数据主体落入活动大陆边缘区, 少量位于活动大陆与被动陆缘界限附近(图3 (b))。与 Bhatia^[9]总结出的不同构造环境下砂岩 的特征主量元素指标相比(表2),各特征值与大洋 岛弧砂岩存在明显差异,SiO,含量明显低于被动大 陆边缘砂岩, TFe, O3+MgO、TiO, 含量极为接近大陆 岛弧活动大陆边缘砂岩含量,但不稳定氧化物 Al₂O₃、K₂O、Na₂O含量存在一定差别(表 2),这与风 化过程中钾交代、钠离子淋滤及长石向黏土矿物转 化等有关。Al, O₃/TiO, 比值为 21.8±2.3, 介于 19~ 28.说明碎屑物质来源于长英质岩石^[10]。在 Roser 等^[8]根据7种氧化物建立的判别函数交会图上,投 点大部分位于成熟大陆石英岩区.少量位于中酸性 火成岩靠近石英岩物源区一侧,明显远离镁铁质区 域(图3(c))。

综上所述,石灰沟组复理石沉积于构造活动较 为活跃的大陆边缘地区,源区以长英质岩石为主,不 含或极少含有镁铁质岩石。

表 2 石灰沟组主量元素特征对比

Table 1	Comparison of	f major element	geochemical	characteristics o	f Shihuigou	Formation
---------	---------------	-----------------	-------------	-------------------	-------------	-----------

构造背景	Na ₂ 0/%	K ₂ 0/%	$(TFe_2O_3+MgO)/\%$	${ m TiO_2}/\%$	${\rm SiO}_2/\%$	Al_2O_3/SiO_2	K ₂ 0/Na ₂ 0	$Al_2O_3/(CaO+Na_2O)$
大洋岛弧	4.10	1.60	8.0 ~14.0	0.8~1.4	58.83	0.10	0.39	1.72
大陆岛弧	3.12	1.89	5.0~8.0	0. 5 ~ 0. 7	70.69	0.18	0.61	2.42
活动大陆边缘	2.77	2.90	2.0~5.0	0.3~0.5	73.86	0.20	0.99	2.56
被动大陆边缘	1.07	1.71	1.0~4.0	0. 2 ~ 0. 5	81.95	0.29	1.60	4.15
样品	1.19	1.94	3.8 ~9.7	0.3~0.6	74.47	0.14	1.60	1.76

图 3 石灰沟组砂岩主量元素判别图解

Fig. 3 Major element discrimination diagram of Shihuigou Formation sandstone

3 稀土元素地球化学特征

样品稀土元素含量特征比值及标准化后的分配 形式显示(表3,图4), ΣREE 在133.5~161.6 μg/ g之间,平均为152.4 μg/g,介于北美页岩(173.21 μg/g)与大陆上地壳(146.37 μg/g)之间;La/Yb 在 10.24~18.15 之间,平均为14.27; ΣLREE/Σ HREE 最大值为10.66,最小值为6.85,平均值为 8.84;(La/Yb)_N平均值为9.64,介于6.92~12.27 之间;δEu_N为0.56~0.72,平均为0.62,介于壳型 花岗岩(0.46)与壳幔型花岗岩(0.84)之间,接近于 北美页岩(0.65);δCe_N均值为0.97,介于0.93~ 1.05之间;球粒陨石标准化的稀土元素分配型式曲 线明显右倾,轻稀土富集,重稀土平坦,Eu中等负异 常,Ce无明显异常;各样品相同元素含量变化较小, 变化趋势一致,表明它们之间亲缘关系密切,来自同 一物源(图4)。

表 3 石灰沟组微量元素特征对比 Table 3 Comparison of geochemical characteristics of trace element in Shihuigou Formation

构造背景	La/	Ce/	$\sum \text{REE}/$	La/Yb	(La/Yb)	LRE	E/	δEu	
	(µg•g•)	(µg•g•)	(µg•g•)			HKF	L.		
大洋岛弧	8±1.7	19±3.7	58 ± 10	4.2±1.3	2.8±0.9	3.8±0	0.9 1.04	4±0.11	
大陆岛弧	27±4.5	59±8.2	146 ± 20	11.0±3.6	7.5±2.5	7.7±	1.7 0.79	9±0.13	
活动大陆边缘	37.0	78.0	86.0	12.5	8.5	9.1	L (0. 6	
被动大陆边缘	39.0	85.0	210.0	15.9	10.8	8.5	5 0	. 56	
样品	32.4±5.5	63.5±5.6	152.4±18.9	14.3±4.1	9.6±2.5	8.8±	1.9 0.62	2±0.13	
构选背星	Th⁄	U/	Hf⁄	Rh/Sr	Th/II	Le/V	La/Se	Th/Se	
何但日泉	$(\mu g \cdot g^{-1})$	$(\mu g \cdot g^{-1})$	$(\mu g \cdot g^{-1})$	100/ 51		Ld/ I	La/ Sc	111/ 50	
大洋岛弧	2.3±0.7	1.1±0.2	2.1±0.6	0.05 ± 0.05	2.1±0.8	0.48±0.12	0.55 ± 0.22	0.15±0.08	
大陆岛弧	11.1±0.2	2.5±0.2	6.3±2.0	0.65±0.33	4.6±0.5	1.02 ± 0.07	1.82±0.3	0.85±0.13	
活动大陆边缘	18.8±3.0	3.9±0.5	6.8	0.89±0.24	4.8±0.4	1.33±0.09	4.55 \pm 0.8	2.59 \pm 0.5	
被动大陆边缘	16.7±3.5	3.2±0.8	10.1	1.19±0.40	5.6±0.7	1.31±0.26	6.25±1.35	3.06 ± 0.8	
样品	15.3±2.9	2.6±0.4	3.5±0.7	0.71 ± 0.4	5.9±1.1	1.26±0.41	4.34±1.82	2.07±0.57	

McLennan^[11]认为沉积物在水体中停留时间较 短时 REE 快速沉积,与水体交换分异弱,北美页岩 标准化的 REE 分配模式平缓,Ce 呈正常型或弱负 异常,分配曲线斜率(La/Yb)_{NASC}值约为1。测试样 品北美页岩(NASC)标准化的 REE 分配模式极为平 缓,(La/Yb)_{NASC}为1.38±0.22,δCe_{NASC}为0.93±0.08 (图4),这表明石灰沟组复理石具有较快的沉积速 率,属活动构造背景下的沉积产物,样品 REE 较好 地反映了源区岩石 REE 信息。

LREE 的富集表明样品中大离子亲石元素含量

较高,上地壳缺少导致 HREE 分馏的因素导致 HREE 无明显变化,源区岩石由于长石的分异导致 Eu 负异常,这一致表明源区物质缺少基性岩石,以 上地壳中酸性岩类为主,可以排除大洋岛弧环境。 由于切割岩浆弧上隆基底以及克拉通内部构造高地 的岩石组合均以上地壳中酸性富硅质岩类为主,3 种构造背景下砂岩 La/Yb、(La/Yb)_N、LREE/HREE 及 δEu 等稀土元素特征值较为接近(表 3)。

与 Bhatia^[9]总结出的不同构造环境下砂岩的特征稀土元素指标相比(表3),各特征值整体介于大

10

陆岛弧环境砂岩与活动大陆边缘砂岩之间,整体明 显低于被动大陆边缘砂岩。北美页岩(NASC)标准 化的 REE 图解显示,石灰沟组砂岩稀土元素与北美

页岩差别不大,同样指示介于大陆岛弧与活动大陆 边缘之间的构造背景,与大洋岛弧及被动大陆边缘 差别明显(图4)。

图 4 石灰沟组砂岩稀土元素标准化图解

Fig. 4 Normalized REE distribution patterns for sandstones from Shihuigou Formation

4 微量元素地球化学特征

在 Zr/Se-Th/Se 图解(图 5(b))上,15 个样品 测试值与成分演化线(BFG)较为接近,表明沉积分 选和再循环作用影响不大,岩石微量元素成分主要 受源区物质组成及构造背景控制。

从大陆上地壳标准化的微量元素蛛网图(图5(a))上可以看出,除Th、Y明显偏高,Rb、Pb、Ba、K、Nb、Sr、Co明显偏低之外,石灰沟组复理石微量元素与大陆上地壳整体较为接近。大离子亲石元素整体接近上地壳平均值(U、La、Ce、Nd),部分低于平均值(Rb、Pb、Ba);高场强元素整体明显亏损,Zr、Hf弱亏损,Nb、Ta强亏损;Ni、Co、V、Sc等铁镁质元素中等富集—中等亏损,整体无明显异常。

Th/U 值(5.9±1.1)高于大陆上地壳(3.8),La/ Sc (4.33)、Th/Sc (2.07)、Th/Co (3.10)、Th/Cr (0.45)等特征值均与大陆上地壳(分别为 2.7、 0.97、1.07、0.31)极为接近,明显不同于大陆下地壳 (分别为 0.3、0.03、0.03、0.005),均表明碎屑物质 来源于上地壳,源区岩石成分偏酸性,缺少中基性岩 石组分^[11]。在 Hf-La/Th^[13]图解(图 5(c))中,样 品点均落于大陆上地壳附近,而与中基性物质偏多 的大陆下地壳差异明显,但 Hf 的含量要略偏低于大 陆上地壳,Hf 及 Zr 等高场强元素的偏低含量也客 观反映了碎屑物质风化再循环程度不高。 Σ REE-La/Yb^[14]图解(图 5(d))、La/Sc-Co/Th^[15]图解、 (图 5(e))及 Zr/Sc-Th/Sc^[16]图解(图 5(b))也均 显示该套复理石建造微量元素与大陆上地壳中酸性 岩类具有极强的"亲缘性"。

与 Bhatia(1986)^[9]给出的不同构造环境不活动

元素含量比值指标相比(表 3), Th、U、Hf、Rb/Sr、 Th/U、La/Y、La/Sc、Th/Sc 明显不同于大洋岛弧及 被动大陆边缘砂岩, 大多数指标介于大陆岛弧及活 动大陆边缘(表 3)。这与微量元素蛛网图(图 5 (a))及 La/Sc-Ti/Zr^[9]、Zr/10-Th-Sc^[9]、Th-Zr/10 -Co^[9]判别图解(图 5(f)、(g)、(h))反映的构造环 境结论完全一致。

5 源区性质、盆山格局及地质意义

厚层、多期次、不同层次、非稳定性浊积岩的形成 暗示源区构造活动较强、应力释放频繁、物质充足且 搬运路径坡角较陡。欧龙布鲁克微地块在寒武纪— 早奥陶世早期沉积了数千米厚的碳酸盐岩.很难想象 如此厚的碳酸盐岩中存在一条碎屑颗粒运移通道,且 通过该通道搬运的碎屑物质所形成的砂岩内不含碳 酸盐岩岩屑。石灰沟组砂岩中测得的古水流向以N 或 NNE 向为主, 与早期 S 或 SE 向展布^[17-18]的碳酸盐 岩沉积体系完全相反,因此该复理石沉积建造与早古 生代早期台地相—斜坡相碳酸盐岩沉积是两个岩石 学类型、沉积相类型及展布方向完全不同的沉积体 系。虽然各类地化指标均排除源区为大洋岛弧的可 能性,但样品点均落入活动大陆边缘和大陆岛弧范围 内或附近。从洋陆俯冲—洋陆碰撞—陆陆碰撞演化 时序角度来看,活动大陆边缘是洋陆俯冲晚期弧-陆 碰撞环境产物,晚于大陆岛弧形成时限。样品地化参 数指示的活动大陆边缘与大陆岛弧"混源"表明,源区 大量卷入大陆岛弧物质,构成由大陆上地壳与岛弧物 质组成的上隆基底,弧-陆碰撞已经开始,即石灰沟组 形成于弧后前陆盆地,碎屑物质来自南部毗邻活动大 陆边缘的滩间山岩浆岛弧造山带(图6)。

目前不少观点认为柴北缘洋俯冲开始于中—晚 奥陶世^[17],与此对应,沉积-古地理研究结论一致认 为寒武纪—中早奥陶世欧龙布鲁克微地块发育向南 倾斜的被动大陆边缘盆地^[17]。石灰沟组复理石碎 屑物质来自南侧由大陆上地壳与岛弧物质组成的上 隆基底,这表明研究区南侧发育由柴达木板块和欧 龙布鲁克板块俯冲、碰撞作用形成的活动构造带,即 滩间山弧陆碰撞地体。由于研究区位置略偏北,考虑到复理石向北超覆、研究区对活动大陆边缘沉积响应存在一定时间滞后性,因此认为早于距今488~471 Ma弧-陆碰撞已经开始,洋陆俯冲岛弧初始形成时间要更早。研究区加里东期岛弧火山岩形成、榴辉岩变质年龄分别分布在距今540~450 Ma、520~450 Ma^[17,19],表明寒武纪初期柴北缘洋已经

开始俯冲,欧龙布鲁克微地块处于滩间山岛弧以北, 早期应发育弧后伸展盆地,但不晚于距今488~471 Ma已转为弧后挤压前陆盆地。

6 结 论

(1)主量元素、微量元素和稀土元素含量比值 及判别图解一致表明,石灰沟组砂岩具有中等风化、 快速堆积的特点,该复理石物源区以上地壳酸性岩 类为主,形成于活动大陆边缘—大陆岛弧构造背景。

(2)早奧陶世晚期,欧龙布鲁克地块南缘大煤 沟—城墙沟一带发生沉积岩类型、沉积相类型乃至 沉积体系的转换,表现为碎屑物质来自南侧滩间山 陆-弧碰撞带的复理石向北的远端超覆,该转换事 件受柴达木地块与滩间山弧陆碰撞带的逆冲挤压控 制。

(3)研究区不晚于距今488~471 Ma 已经进入 陆-弧碰撞阶段,寒武纪—早奧陶世欧龙布鲁克海 盆处于弧后位置,并非是被动大陆边缘盆地,而是与 洋陆俯冲陆-弧碰撞有关的活动大陆边缘盆地。

参考文献:

 [1] 鲁洪波,姜在兴.稀土元素地球化学分析在岩相古地 理研究中的应用[J].石油大学学报:自然科学版, 1999,23(1):19-26.

> LU Hongbo, JIANG Zaixing. Application of geochemical analysis of rare earth elements in the study of lithofacies paleogeography[J]. Journal of the University of Petroleum, China(Edition of Natural Science), 1999, 23(1):19-26.

[2] 余烨,张昌民,李少华,等. 惠州凹陷珠江组泥岩地球 化学特征及其地质意义[J].中国石油大学学报:自然 科学版,2014,38(1):40-49.

> YU Ye, ZHANG Changmin, LI Shaohua, et al. Geochemical characteristics and geological significance of mudstones from Zhujiang formation of Huizhou depression [J]. Journal of China University of Petroleum (Edition of Natural Science), 2014, 38(1):40-49.

 [3] 孙娇鹏,陈世悦,彭渊,等. 全吉地区新元古代滨岸冰川沉积特征及地质意义[J]. 地质学报,2014,88(7): 1134-1140.

> SUN Jiaopeng, CHEN Shiyue, PENG yuan, et al. Features of Neoproterozoic Glaciomarine sedimentary in Quanji area and its geological significance [J]. Acta Geoligica Sinica,2014,88(7):1134-1140.

[4] 青海省地质矿产局.青海省区域地质志[M].北京:地 质出版社,1991.

- [5] COX R, LOWE D R, CULLERS R L. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States
 [J]. Geochimica et Cosmochimica Acta, 1995, 59 (14): 2919-2940.
- [6] NESBITT H W, YOUNG G M. Early proterozoic climates and plate motion inferred from major element chemistry of lutites[J]. Nature, 1982, 299:715-717.
- [7] PETTIJOHN F J, POTTER P E, SIEVER R. Sand and sandstone[M]. New York: Springer-Verlag, 1972;618.
- [8] ROSER B P, KORSCH R J. Determination of tectonic setting of sandstone-mudstone suites using SiO₂ content and K2O/Na₂O ratio[J]. Journal of Geology, 1986, 94: 635-650.
- [9] BHATIA M R, CROOK K W. Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basins [J]. Contribution to Mineralogy and Petrology, 1986, 92:181-193.
- [10] GIRTY G H, RIDGE D L, KNAACK C, et al. Provenance and depositional setting of Paleozoic chert and argillite, Sierra Nevada, California [J]. Journal of Sedimentary Research, 1996, 66(1):107-118.
- [11] MCLENNAN S M, HEMMING S, MCDANIEL M J, et al. Geochemical approaches to sedimentation, provenance and tectonics[C]//JONHANSON M J. Processes Controlling the Composition of Clastic Sediments. Boulder:Geological Society of America, 1993:21-40.
- [12] MURRY R W. Rare earth elements as indicat ors of different marine depositional environments in chert and shale[J]. Geology, 1990, 18:268-271.
- [13] FLOYD P A, LEVERIDGE B E. Tectonic environment of the Devonian Gramscatho Basin, South Cornwall: framework mode and geochemical evidence from turbiditic sandstones [J]. Journal of the Geological Society, 1987,144(4):531-542.
- [14] JONES B, MANNING D C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones [J]. Chemical Geology, 1994,111:111-129.
- [15] TRIBOVILLARD N, ALGEO T J, LYONS T, RIBOULLEAU A. Trace metals as paleoredox and paleoproductivity proxies-An update[J]. Chemical Geology,2006,232:12-32
- [16] PATTAN J N, PEARCE N G, MISLANKAR P G. Constraints in using Cerium-anomaly of bulk sediments as an indicator of paleo bottom water redox environment: a case study from the Central Indian Ocean Basin [J]. Chemical Geology, 2005, 221:260-278.
- [17] 孙娇鹏,陈世悦,胡忠亚,等.柴东北缘古生代碎屑岩

-碳酸盐岩混积相发育特征及组合模式研究[J]. 天 然气地球科学,2014,25(10):1586-1593.

SUN Jiaopeng, CHEN Shiyue, HU Zhongya, et al. Research on the mixed model and developmental characteristic of the clastic-carbonate diamictite facies in the northern Qaidam [J]. Natural Gas Geoscience, 2014, 25 (10):1586-1593.

 [18] 冯增昭,张家强,金振奎,等.中国西北地区奥陶纪岩 相古地理[J].古地理学报,2000,2(3):1-14.
 FENG Zengzhao, ZHANG Jiaqiang, JIN Zhenkui, et al. Lithofacies palaeogeography of the Ordovician in Northwest China [J]. Journal of Palaeogeography, 2000, 2
(3):1-14.

 [19] 孙娇鹏,陈世悦,彭渊,等.柴北缘构造带泥盆纪构造 属性研究[J].中国石油大学学报:自然科学版, 2015,39(2):23-30.
 SUN Jiaopeng, CHEN Shiyue, PENG Yuan, et al. Re-

search on Northern Qaidam tectonic attributes during Devonian[J]. Journal of China University of Petroleum(Edition of Natural Science) ,2015,39(2):23-30.

(编辑 修荣荣)