文章编号:1673-5005(2015)05-0150-07

La 含量对 Ni-S₂ O₈²⁻ / ZrO₂ -Al₂ O₃ 固体超强酸 催化剂结构及异构性能的影响

宋 华^{1,2},赵乐乐¹,宋华林³,王 娜¹,李 锋²

(1. 东北石油大学化学化工学院,黑龙江大庆 163318; 2. 东北石油大学石油与天然气化工黑龙江省重点实验室, 黑龙江大庆 163318; 3. 牡丹江医学院黑龙江省高校肿瘤疾病防治重点实验室,黑龙江牡丹江 157011)

摘要:制备一系列不同 La 质量分数的 La-Ni-S₂O₈²⁻/ZrO₂-Al₂O₃ 催化剂(记为 La-Ni-SZA),采用 XRD、BET、H₂-TPR、FTIR、Py-IR 等手段对催化剂进行表征。以正戊烷异构化为探针反应,考察 La 质量分数对催化剂结构和异构 化性能的影响。结果表明:引入适量的 La 能使催化剂中四方晶相 ZrO₂ 的颗粒尺寸减小,改善催化剂的氧化还原性 能,促进 L 酸和 B 酸的形成;催化剂总酸量顺序为 La(1.0)-Ni-SZA>Ni-SZA>SZA;La 质量分数为 1.0% 的 La(1.0) -Ni-SZA 催化剂具有最高的异构化活性,在反应温度为 140 ℃、压力为 2.0 MPa、氢烃摩尔比为 4、质量空速为 1.0 h^{-1} 时,异戊烷产率达 66.5%,明显高于 Ni-SZA 催化剂最佳反应温度(180 ℃)下的异戊烷产率(55.0%)。

关键词:镧; 镍; 固体超强酸; 正戊烷; 异构化

中图分类号:TQ 426.99 文献标志码:A

引用格式:宋华,赵乐乐,宋华林,等. La 含量对 Ni-S₂O₈²⁻/ZrO₂-Al₂O₃ 固体超强酸催化剂结构及异构性能的影响 [J]. 中国石油大学学报:自然科学版, 2015,39(5):150-156.

SONG Hua, ZHAO Lele, SONG Hualin, et al. Effects of La contents on the structure and isomerization performance over solid superacid Ni– $S_2O_8^{2^-}/ZrO_2$ –Al₂O₃[J]. Journal of China University of Petroleum (Edition of Natural Science), 2015, 39(5):150-156.

Effects of La contents on the structure and isomerization performance over solid superacid Ni-S₂O₈²⁻/ZrO₂-Al₂O₃

SONG Hua^{1,2}, ZHAO Lele¹, SONG Hualin³, WANG Na¹, LI Feng²

(1. College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, China;

2. Heilongjiang Provincial Key Laboratory of Chemical Engineering of Oil and Gas, Northeast Petroleum University,

Daqing 163318, China;

3. Key Laboratory of Cancer Prevention and Treatment of Heilongjiang Province, Mudanjiang Medical University, Mudanjiang 157011, China)

Abstract: A series of La-Ni-S₂O₈²⁻/ZrO₂-Al₂O₃ (La-Ni-SZA) catalysts with different La mass fractions were prepared, which were characterized by XRD, BET, H₂-TPR, FTIR and Py-IR techniques. The effects of the La content on the catalyst structure and isomerization performance were studied using n-petane isomerization as a probe reaction. The results show that the addition of an appropriate amount of La decreases the ZrO₂ particle size of tetragonal phase in the catalyst, which improves the redox properties of the catalyst, and promotes the formation of L acid and B acid. The total acidity of catalysts decreases in the order of La(1.0)-Ni-SZA>Ni-SZA>SZA. The La(1.0)-Ni-SZA with La mass fraction of 1.0% presents the best isomerization performance. At a reaction temperature of 140 °C, a pressure of 2.0 MPa, a hydrogen/hydrocarbon molar ratio of 4, and a MHSV of 1.0 h⁻¹, the isopentane yield reaches a maximum of 66.5%, which is significantly higher than the isopentane yield of Ni-SZA catalyst (55.0%) at the optimal reaction temperature of 180 °C.

作者简介:宋华(1963-),女,教授,博士,博士生导师,研究方向为工业催化。E-mail:songhua2004@ sina. com。

Keywords: La; Ni; solid suceracid; n-pentane; isomerization

汽油中芳烃燃烧后产生的致癌物苯随尾气排出 污染环境,烯烃则会增加发动机尾气排放气中的 CO 和 NO,^[1]。轻质烷烃的异构化是增加汽油中的异构 烷烃的含量、提高汽油质量的理想选择。正构烷烃 进行异构化关键取决于所用催化剂^[2-3]。工业上应 用的酸催化剂主要是液体酸,包括H,SO4、HNO3、 HF 等传统酸和 AlCl₃、BF₃ 等 L 酸,由于它们具有毒 性和腐蚀性,其应用受到了限制^[45]。固体酸催化剂 具有酸性强、稳定性好、不腐蚀设备、重复利用率高 和环境友好等优点。SO42-/ZrO,和S2O82-/ZrO,型 固体超强酸催化剂被认为是最有发展潜力的新型催 化材料^[6-7]。贵金属 Pt 和 Pd 负载型固体超强酸催 化剂^[8-10]的催化效果好,但成本较高,笔者采用 Ni 作为活性组分,通过浸渍法制备 Ni-S₂O₂²⁻/ZrO₂-Al₂O₃(记为 Ni-SZA)催化剂,并通过引入 La 制备出 不同 La 含量的 La-Ni-SZA 催化剂,研究 La 含量对 Ni-SZA 催化剂结构和异构化性能的影响。

1 实 验

1.1 催化剂的制备

将一定量的 ZrOCl₂ · 8H₂O 和 Al (NO₃)₃ · 9H₂O 溶于蒸馏水,并用氨水滴定至 pH=9~10。沉 淀陈化 24 h 后,反复洗涤至无氯离子,于 110 ℃干 燥,研磨至 0.147 mm 以下,制得 ZrO₂-Al₂O₃ 催化剂 载体。

将制得的载体粉末用 0.5 mol/L 的(NH₄)₂S₂O₈ 溶液浸渍 6 h,烘干 4 h,得到 S₂O₈²⁻/ZrO₂-Al₂O₃,记 为 SZA。并将 SZA 用计算量的 Ni(NO₃)₂ 溶液进行 等体积浸渍 6 h,烘干 4 h 得到固体粉末(记为 PNi-SZA)后,于 650 ℃ 焙烧 3 h,制得 Ni 质量分数为 1.0%的 Ni-SZA 催化剂;并将 SZA 用计算量的 La (NO₃)₃ 溶液进行等体积浸渍 6 h,烘干 4 h 得到固 体粉末后,于 650 ℃ 焙烧 3 h,制得 La 质量分数为 1.0%的 La-SZA 催化剂;将 PNi-SZA 用 La(NO₃)₃ 溶液进行等体积浸渍 6 h,烘干 4 h 后,于 650 ℃ 焙 烧 3 h,制得的催化剂记为 La(x) -Ni-SZA(其中 x为催化剂中 La 的质量分数,%。本文中 x = 0.5、 0.8、1.0、1.2、2.0)。

1.2 催化剂的活性评价

催化剂活性评价采用连续流动式固定床高压微 反应器-色谱联动装置进行。实验选取纯度大于 99%正戊烷化学纯为原料,实验氢纯度为工业级。 將催化剂用 H₂ 气在 300 ℃下还原 3 h 后,在反应压 力为 2.0 MPa、氢烃摩尔比为 4、质量空速为 1.0 h⁻¹ 的条件下进行异构化反应,反应产物进入 GC9790 II 型气相色谱仪进行在线分析。

1.3 催化剂的表征

X 射线粉末衍射(XRD)分析使用日本理学公 司 D/max-2200 型 X 射线衍射仪(Cu 靶,K α 线,扫 描范围 10°~80°)。比表面积(BET)的测定在美国 康塔 NVOA/2000e 型比表面积和孔径分析仪上完 成,以液氮温度下的氮气作为吸附质。程序升温还 原(H₂-TPR)由北京彼奥德电子公司生产的 PCA-1200 气体吸附分析仪测定,采用热导池做检测器, 气体流量为 20 mL/min,升温速率为 10 °C/min。傅 里叶变换红外光谱(FT-IR)分析采用德国布鲁克光 谱仪器公司的 Tensor27 傅里叶红外光谱仪,400~ 4000 cm⁻¹扫描,KBr 压片。

2 结果分析

2.1 催化剂的 XRD 分析

图 1 为 SZA、La-SZA、Ni-SZA 和 La(1.0%)-Ni-SZA 催化剂的 XRD 图谱。由图 1 可知,各催化 剂均在 2*θ*≈30.2°、35.1°、50.6°、60.5°出现明显的

图 1 SZA, La-SZA, Ni-SZA, La(1.0)-Ni-SZA的 XRD 谱图

Fig. 1 XRD patterns of SZA, La–SZA, Ni–SZA and La(1.0)–Ni–SZA

ZrO₂ 四方晶相特征衍射峰,不存在单斜晶相峰(2 θ ≈ 30.5°、35.5°、50.8°、60.4°)^[11]。四方晶相是锆 基固体超强酸催化剂具有较高催化活性的必要条 件^[12]。谱图中并没有出现 Ni 或 La 的衍射峰,是因 为 Ni 和 La 的含量很低,高度分散于载体表面,且不 影响催化剂的晶型^[13]。根据 Scherrer 公式计算的 各催化剂的粒径见表1。由表1可知,加入 Ni 之后 催化剂中 ZrO₂ 的粒径明显减小,而加入 La 后粒径 进一步减小,说明 Ni 和 La 的存在可以使 Al₂O₃ 粒 子在 ZrO₂ 晶格中的分散性提高,并阻止晶相成长, 使粒度细化,从而增加催化剂的比表面积,使催化剂 拥有更多的活性中心^[14]。La₂O₃ 的加入能抑制 NiO 在焙烧过程中的晶粒增大和烧结现象,提高 NiO 在 催化剂表面的分散度^[15]。

表1 SZA、Ni-SZA、La(x)-Ni-SZA 催化剂的结构性质

Table 1 Textural properties of SZA, Ni-SZA and

La(x) - Ni - SZA catalysts	
----------------------------	--

	BET 比表面	孔容 V/	平均孔	ZrO_2		
催化剂	积 S/	$(\mathrm{cm}^3 \cdot$	径 d/	直径/		
	$(m^2 \cdot g^{-1})$	g^{-1})	nm	nm		
SZA	101.7	0.110	4.33	14.3		
Ni-SZA	104.6	0.112	4.28	9.7		
La(0.8)-Ni-ZA	99.6	0.106	4.26	_		
La(1.0)-Ni-SZA	97.9	0.103	4.21	7.7		
La(1.2)-Ni-SZA	87.6	0.096	4.38	_		
La(2.0)-Ni-SZA	84.2	0.089	4.23	—		

注:ZrO2 直径根据 Debye—Scherrer 公式得到。

2.2 催化剂的 BET 分析

催化剂的 BET 分析结果列于表 1。由表 1 可 知,SZA 的比表面积和孔容分别为 $101.7 \text{ m}^2 \cdot \text{g}^{-1}$ 和 0.110 cm³ · g⁻¹。与 SZA 相比, Ni-SZA 的比表面积 和孔体积略微增大,而平均孔径减小,表明 Ni 进入 载体孔道,占据孔道空间,使催化剂平均孔径变 小^[13];此外,由 XRD 分析可知,Ni 的引入能够减小 ZrO, 的粒径, 使催化剂的比表面积变大。与 Ni-SZA 相比, La(x) – Ni – SZA 催化剂的比表面积和孔 容均降低,且随 La 含量的增加,比表面积和孔容均 降低。王敏炜等^[16]研究了稀土 La 对 WO₃/ZrO, 固 体酸的影响,认为适量 La 的引入可抑制二氧化锆前 驱体颗粒过快的生长和高温下孔径的扩张,从而维 持了介孔 WO₃/ZrO, 固体酸较高的比表面积。这可 能是虽然添加 La 使 ZrO, 的粒径减小,但由于 La 堵 塞催化剂的部分孔道,引起的催化剂比表面积降低 占主导的缘故。

图 2 为 SZA、Ni-SZA 和 La(x) -Ni-SZA 催化剂 的孔径分布曲线。所有催化剂的孔径分布较为集 中,大多分布在 3 ~ 6 nm。添加 Ni 和 La 之后, dV/ dlog(D)函数的最大值移动并不明显,说明添加 Ni 和 La 对于孔道结构影响不大。图 3 为 SZA、Ni-SZA 和 La(x) -Ni-SZA 催化剂的 N₂ 等温吸脱附曲 线。由图 3 可知,所有催化剂均出现一个明显的滞 后环,各种催化剂的等温线均为N型等温线,说明负 载 La 和 Ni 后催化剂仍属于介孔结构。在 p/p_0 = 0.4~0.6 吸附量均有一突增,说明催化剂具有良好的介孔分布和中孔均一性。另外,突增出现时的相对压力基本相等,说明催化剂孔径的尺寸基本相同,此结果与 BET 结果一致。

图 2 SZA、Ni-SZA 和 La(x)-Ni-SZA 催化剂的孔径分布

Fig. 2 Pore size distribution of SZA, Ni-SZA and

图 3 SZA、Ni-SZA 和 La(x)-Ni-SZA 催化剂的 N₂ 等温吸脱附曲线

Fig. 3 N₂ adsorption-desorption isotherms of SZA,

Ni-SZA and La(x)-Ni-SZA catalysts

2.3 催化剂的 TPR 分析

图 4 为 H₂ 气氛下不同 La 含量的 La(x)-Ni-SZA 催化剂的 TPR 图。可以看出,在没有加入 La 时,催化剂在 510 和 545 ℃附近出现两个重叠的还 原峰,分别为 NiO 和 S₂O₈²⁻的还原峰。通常 NiO 还 原为金属态 Ni 的温度为 320 ℃^[17],S₂O₈²⁻的还原温 度为 650 ℃^[18],说明 NiO 和载体之间存在相互作 用,使其还原温度彼此靠近^[19]。加入 La 之后,随着 La 含量的增加,催化剂中 NiO 和 S₂O₈²⁻的还原峰位 置均向低温处移动,还原温区变宽,说明 La 能够促 进 NiO 和 S₂O₈²⁻的还原,进而提高了催化剂的氧化 还原性能。催化剂活性的提高与其还原能力有密切 关系,Jiang 等^[20]认为催化剂活性提高的主要原因 是 La₂O₃ 和 ZrO₂ 很难在本实验温度范围被还原,所以

图 4 Ni-SZA 和 La(x)-Ni-SZA 催化剂的 TPR 曲线 Fig. 4 TPR profiles of Ni-SZA and La(x)-Ni-SZA catalysts

2.4 催化剂的 FTIR 分析

图 5 不同 La 含量的 Ni-SZA 催化剂的 FTIR 曲线 Fig. 5 IR spectra of Ni-SZA catalysts with different La contents

由图5可知,不同La含量制备的La-Ni-SZA 催化剂均出现了超强酸的特征峰(1072、1151和 1270cm⁻¹),在3410 cm⁻¹附近出现一个强而宽的吸 收峰,这是表面羟基或者水分子的 O-H 的伸缩振 动吸收,在1639 cm⁻¹处的吸收峰是表面复合氧化物 吸附水的 O-H 变形振动峰,在1020 cm⁻¹和1090 cm⁻¹附近处出现的是双配位基硫酸根离子的 0— S—O 对称伸缩振动峰,在1270 cm⁻¹附近是 O = S =0 共价双键的反对称伸缩振动峰^[22],这3个峰的 强度及劈裂范围一定程度上反映了金属氧化物表面 结合 S₂O₈²⁻的数量,也反映了催化剂表面酸性中心 的数量^[23]。随着 La 含量的增加,催化剂在 960~ 1400 cm⁻¹处强酸峰面积呈现先增加后减少的趋势, 在 La 含量为 1.0% 时,催化剂在 960~1400 cm⁻¹处 强酸峰面积达到最大,劈裂程度最强,说明加入适量 金属 La 可以提高了 O = S = O 反对称伸缩振动峰 和 O-S-O 对称伸缩振动峰的强度,从而使 Ni-SZA 催化剂表面酸性中心增加,活性增强。此结果

与王敏炜等^[16]研究 La 对 WO₃/ZrO₂ 固体酸的影响时得到的结果一致。

2.5 La 对 Ni-SZA 表面酸性的影响

图 6 为 SZA、Ni-SZA 和 La(1.0) -Ni-SZA 催化 剂在 300 ℃下的吡啶吸附红外谱图。由图 6 可知, 所有催化剂在 1450 和 1540 cm⁻¹附近均出现了红外 吸收峰,表明它们都同时存在 B 酸和 L 酸。其中, 在 1450 cm⁻¹附近出现的是配位键吡啶峰,为 L 酸位 的特征吸收;1 540 cm⁻¹附近出现的是吡啶离子峰, 为 B 酸位的特征吸收^[11]。Ahmed^[24]认为,在 1 449 cm⁻¹和 1 612 cm⁻¹处出现的是 L 酸位,在 1 541 和 1 641 cm⁻¹处出现的峰是吡啶与 B 酸位相互作用, 1 576和 1 491 cm⁻¹附近的峰是 B 酸和 L 酸的相互作 用。

Fig. 6 FT–IR spectra of pyridine adsorption on the SZA, Ni–SZA and La(1.0)–Ni–SZA

与 SZA 相比, Ni-SZA 催化剂的 B 酸含量变化 不大,而L酸含量略有增加,B/L降低,表明Ni可以 充当L酸的酸性中心,促进催化剂中L酸的形成, 此结果与 Pérez 等^[25]的研究结果一致。与 Ni-SZA 相比,La(1.0)-Ni-SZA 催化剂在1449 和1612 cm⁻¹处的 L 酸位特征吸收峰和 1541 cm⁻¹处的 B 酸 位特征吸收峰强度均增强,说明 La 的加入有利于催 化剂中L酸和B酸的形成,使L酸和B酸量均大幅 增加,各催化剂总酸量顺序为La(1.0)-Ni-SZA> Ni -SZA> SZA。文献报道^[24]单纯的 ZrO, 只存在 L 酸 位,通过 SO42-离子浸渍后在 ZrO, 表面产生强的 B 酸,同时增加L酸位的数量和强度:B酸的强度和酸 量与酸根离子浓度和四方晶相的稳定性有关。La 的加入对 S₂O₈²⁻的负载量和 ZrO₂ 四方晶相的稳定 性起到重要的促进作用,从而使 La(1.0)-Ni-SZA 催化剂具有更多的 B 酸量^[14]。在浸渍过程中, La³⁺ 阳离子与水分子结合形成[La(H,O)]³⁺,然后经过 焙烧 La³⁺发生水解,由此产生的质子可作为 B 酸中 心($[La(H_2O)_n]^{3+} \rightarrow [La(OH)(H_2O)_{n-1}]^{2+} + H^+),$ B 酸中心的数量增加,此结果与 Yu 等^[26]人报道的

结果一致。

2.6 La 含量对正庚烷异构化反应性能的影响

在其他条件不变的情况下,改变 La 的质量分 数,考察La含量对催化剂性能的影响,结果见图7。 由图 7 可知,与 Ni-SZA 催化剂相比,La 含量小于 1.2%时,La的加入使催化剂的异戊烷产率提高,最 佳反应温度降低。双功能催化剂一般采用金属负载 于酸性载体上,酸性载体提供 B 酸位进行烷烃骨架 异构,而金属中心通常起到加氢脱氢的作用,由酸性 中心和金属中心协同作用完成异构化反应^[27]。结 合 Py-IR 分析结果可知,适量 La 改性后催化剂 B 酸强度明显增加; TPR 表征结果表明, La 的加入提 高了催化剂的氧化还原性能,有利于催化剂上 H, 解离,形成质子酸,这些都促使了催化剂活性的提 高。当La含量大于2%时,La的加入反而使催化剂 的异戊烷产率降低,最佳反应温度升高。这可能是 因过量的 La 容易在载体上移动而聚集, 堵塞催化剂 的孔道,从而导致催化剂的比表面降低(表1),活性 组分的分散度降低,形成固体超强酸的酸量减少 (图5)^[15]。La 含量为 1.0% 的催化剂具有最高的 异构化活性,在较低的反应温度(140℃)下,异戊烷 产率达到 66.5%, 明显高于 Ni-SZA 催化剂最佳反 应温度(180 ℃)下的异戊烷产率(55.0%)。

Fig. 7 Effect of La mass fraction on isopentane yield on La(x)-Ni-SZA catalysts

3 结束语

通过向 Ni-SZA 催化剂引入 La 制备 La(x)-Ni -SZA 催化剂,并采用适当的表征方法对催化剂进 行表征。TPR 分析结果表明,随着 La 含量的增加, 催化剂中 NiO 和 S₂O₈²⁻的还原峰位置均向低温处移 动,还原温区变宽,两峰之间距离减小,说明 La₂O₃ 与 NiO 之间的相互作用提高了催化剂的氧化还原 性能,使催化剂更加稳定。适量金属 La 的加入提高 了 O = S = O 反对称伸缩振动峰和 O—S—O 对称 伸缩振动峰,从而使 Ni-SZA 催化剂表面酸性中心 增加,活性增强。La 的加入有利于催化剂中 L 酸和 B 酸的形成,使 L 酸和 B 酸量均大幅增加,各催化剂 总酸量顺序为 La(1.0)-Ni-SZA>Ni-SZA>SZA。以 正戊烷异构反应为探针考察 La 含量对催化剂性能 的影响,结果表明,当 La 质量分数为 1.0% 时,催化 剂异构活性最高,在反应压力为 2.0 MPa、氢烃摩尔 比为 4、质量空速为 1.0 h⁻¹及温度 140 ℃的条件下 异戊烷产率可达 66.5%,而未添加 La 的 Ni-SZA 催 化剂在其他条件相同时,最佳反应温度 180 ℃下,异 戊烷产率只有 55.0%。

参考文献:

- REZGUI Y, GUEMINI M, TIGHEZZ A. Isomerization of n-heptane over Ni-WO_x/SiO₂-Al₂O₃ catalysts: effect of operating conditions, and nickel and tungsten loading
 Catalysis Letters, 2003, 87(1/2): 11-24.
- [2] JOSÉ M H, DALIBOR K, OLEG B, et al. Isomerization of C₅-C₇ paraffins over a Pt/WO₃-ZrO₂ catalyst using industrial feedstock [J]. Monatsh Chem, 2014, 145:1407-1416.
- URZHUNTSEV G A, OVCHINNIKOVA E V, CHUMA-CHENKO V A, et al. Isomerization of n-butane over Pd-SO₄/ZrO₂ catalyst: prospects for commercial application
 [J]. Chemical Engineering Journal, 2014, 238: 148-156.
- [4] WU Y N, LIAO S J. Review of SO₄²⁻/M_xO_y solid superacid catalysts [J]. Front Chem Eng China, 2009, 3 (3):330-343.
- [5] FAN G D, SHEN M, ZHANG Z, et al. Preparation, characterization and catalytic properties of S₂O₈²⁻/ZrO₂-CeO₂ solid superacid catalyst[J]. Chemical Engineering Journal, 2014,238:148-156.
- [6] WANG J X, PAN H, WANG A Q, et al. Synthesis and characterization of S₂O₈²⁻/ZnFe_xAl_{2-x}O₄ solid acid catalysts for the esterification of acetic acid with n-butanol [J]. Catalysis Communications, 2015,62:29-33.
- SARAVANAN K, BEENA T, RAM S S, et al. Esterification of palmitic acid with methanol over template-assisted mesoporous sulfated zirconia solid acid catalyst [J].
 Applied Catalysis B: Environmental, 2015 (172/173): 108-115.
- [8] SAMEER V, WOLF E E. A highly active and stable platinum-modified sulfated zirconia catalyst[J]. Applied Catalysis A: General, 2004,264:117-124.

- [9] 宋华,宋华林,崔雪涵,等. Pd 含量对 SO₄²⁻/ZrO₂-WO₃ 固体超强酸催化剂其异构化性能的影响[J]. 燃料化学学报, 2012,40(11):1346-1352.
 SONG Hua, SONG Hualin, CUI Xuehan, et al. Effect of Pd content on the catalytic performance of SO₄²⁻/ZrO₂-WO₃ solid superacid in pentane isomerization[J]. Journal of Fuel Chemistry and Technology, 2012,40(11):
- [10] XU X, LIU T, XIE P F, et al. Enhanced catalytic performance over Fe₂O₃-doped Pt/SO₄⁻²⁻/ZrO₂ in n-heptane hydroisomerization [J]. Catalysis Communications, 2014,54:77-80.

1346-1352.

[11] 宋华,董鹏飞,石洋. Pt 含量及活化温度对固体超强 酸催化剂异构化性能的影响[J].高等学校化学学 报,2011,32(2):355-360.

SONG Hua, DONG Pengfei, SHI Yang. Effects of Pt contents and activation temperature on the isomerization performance over solid superacid Pt-S₂O₈²⁻/ZrO₂-Al₂O₃ [J]. Chemical Journal of Chinese Universities, 2011, 32(2):355-360.

[12] 周晓龙,余国贤,金亚清,等. Pt 和 Al₂O₃ 改性 SO₄^{2-/}ZrO₂ 正己烷异构化反应性能[J]. 华东理工大学学报:自然科学版,2007,33(3):309-313.

ZHOU Xiaolong, YU Guoxian, JIN Yaqing, et al. n-Hexane isomerization over Pt and Al_2O_3 -promoted $SO_4^{2-}/ZrO_2[J]$. Journal of East China University of Science and Technology (Natural Science Edition), 2007, 33(3);309-313.

[13] 张雪乔, 王世丹, 信欣, 等. Ag 对 Pd/CeO₂-ZrO₂-La₂O₃-Al₂O₃ 催化氧化甲醇性能的影响[J]. 无机化
 学授报, 2012, 28(8): 1563-1569.

ZHANG Xueqiao, WANG Shidan, XIN Xin, et al. Effects of Ag on performance of methanol oxidation over Pd/CeO₂-ZrO₂-La₂O₃-Al₂O₃ [J]. Chinese Journal of Inorganic Chemistry, 2012,28(8):1563-1569.

[14] 马惠琴,王卫,马媛媛. La 改性固体超强酸 S₂O₈²/ZrO₂-A1₂O₃ 的制备及催化性能研究[J]. 材料导报,2014,28(3):48-52.

MA Huiqin, WANG Wei, MA Yuanyuan. Preparation and catalytic properties study of solid superacid catalyst $S_2O_8^{-2-}/ZrO_2-A1_2O_3$ modified by lanthanum[J]. Materials Review, 2014,28(3):48-52.

[15] 所艳华,李秀敏,陈刚,等. Ce 促进 Ni/SAPO-11 催化 剂上正庚烷的临氢异构化[J]. 高等学校化学学报, 2014,35(6):1252-1257.

> SUO Yanhua, LI Xiumin, CHEN Gang, et al. Ni/SA-PO-11 promoted by rare earth element Ce for hydroisomerization of n-heptane[J]. Chemical Journal of Chi

nese Universities, 2014,35(6):1252-1257.

- [16] 王敏炜,徐萍,王健,等. 镧对 WO₃/ZrO₂ 固体超强酸酸强度和结构的影响[J].南昌大学学报:工科版, 2010,32(4):369-371.
 WANG Minwei, XU Ping, WANG Jian, et al. Effects of lanthanum on acid strength and structure of WO₃/ZrO₂ solid acid catalyst[J]. Journal of Nanchang University (Engineering & Technology), 2010,32(4): 369-371.
 - [17] PÉREZ-HERNÁNDEZ R, MONDRAGÓN G G, MEN-DOZA A D, et al. Synthesis and characterization of bimetallic Cu-Ni/ZrO₂ nanocatalysts: H₂ production by oxidative steam reforming of methanol[J]. International Journal of Hydrogen Energy, 2008,33:4569-4576.
 - [18] JAVIER M G, JUAN C Y, CARLOS R V, et al. Crystal phase dependent metal-support interactions in Pt/SO₄²⁻-ZrO₂ catalysts for hydroconversion of n-alkanes
 [J]. Applied Catalysis A: General, 2004, 265:141-152.
 - [19] TAO W, CHENG H W, YAO W L, et al. Syngas production by CO₂ reforming of coke oven gas over Ni/ La₂O₃-ZrO₂ catalysts [J]. International Journal of Hydrogen Energy, 2014,39:18650-18658.
 - [20] JIANG X Y, ZHOU R X, PAN P, et al. Effect of the addition of La₂O₃ on TPR and TPD of CuO/γ-Al₂O₃ catalysts [J]. Applied Catalysis A: General, 1997,150:131-141.
 - [21] GUO X M, MAO D S, LU G Z, et al. The influence of La doping on the catalytic behavior of Cu/ZrO₂ for methanol synthesis from CO₂ hydrogenation [J]. Journal of Molecular Catalysis A: Chemical, 2011,345:60-68.
 - [22] FAN G D, SHEN M, ZHANG Z, et al. Preparation, characterization and catalytic properties of S₂O₈²⁻/ZrO₂-CeO₂ solid superacid catalyst [J]. Journal of Rare Earths, 2009,27(3):437-442.
 - [23] 宋华,董鹏飞,张旭. 制备条件对 Pt-S₂O₈²⁻/ZrO₂-Al₂O₃ 异构化催化性能的影响[J]. 石油学报:石油加工,2010,26(6):877-882.
 SONG Hua, DONG Pengfei, ZHANG Xu. Effect of preparation conditions on the catalytic isomerization performance of Pt-S₂O₈²⁻/ZrO₂-Al₂O₃[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2010, 26(6): 877-882.
 - [24] AHMED M A. Surface characterization and catalytic activity of sulfated-hafnia promoted zirconia catalysts for nbutane isomerization [J]. Fuel Processing Technology, 2011, 92:1121-1128.
 - [25] PÉREZ M, ARMENDÁRIZ H, TOLEDO J A, et al.

Preparation of Ni/ZrO_2 - SO_4^{2-} catalysts by incipient wetness method: effect of nickel on the isomerization of nbutane[J]. Journal of Molecular Catalysis A: Chemical, 1999,149:169-178.

- [26] YU G X, LIN D L, HU Y, et al. RE₂O₃-promoted Pt-SO₄²⁻/ZrO₂-Al₂O₃ catalyst in n-hexane hydroisomerization[J]. Catalysis Today, 2011,166:84-90.
- [27] 柳云骐,田志坚,徐竹生,等.正构烷烃在双功能催化

剂上异构化反应研究进展[J]. 石油大学学报:自然 科学版,2002,26(1):123-129.

LIU Yunqi, TIAN Zhijian, XU Zhusheng, et al. Review on hydroisomerization reaction of n-alkane on bifunctional catalysts[J]. Journal of the University of Petroleum, China(Edition of Natural Science), 2002,26(1):123-129.

(编辑 刘为清)